

Capgemini

Master Thesis Connected Defence: Next-Generation Data Platform for Military Intelligence and Operations First Lieutenant, Representative, Valentin Pfeil

Stakeholder

"We operate in a world where technology is omnipresent, profoundly transforming society, businesses and organizations. [...]"

- Capgemini, CEO, Aiman Ezzat [2]

Strategic Collaboration Agreement (SCA) [3]
Connected Defence

Introduction	Thesis	Validation	Results	Conclusion

Dislocation - Project OmniAware

- Cloud-Native: Leverages the scalability and flexibility of the AWS cloud infrastructure
- **Data-Driven:** Enables informed decision-making through real-time data analysis. (Telemetry, Images, etc.)
- Defence-Compliant: Meets stringent security and regulatory requirements. (Security Controls, Confidential Computing)
- Monitoring and Al-Assisted Decision-Making:
 Delivers continuous mission awareness through RT anomaly detection, model-driven threat assessments and adaptive alerting. Leverages the latest Al models with support for sensor fusion and dynamic retraining.

Introduction Thesis Validation Results Conclusion

Research Questions

RQ1:

How can a cloud-native defence architecture be designed to ensure compliance with the **NATO Architecture Framework Version 4** (NAFv4) while supporting secure and scalable mission-critical operations?

RQ2:

What are the **key security challenges in defence cloud infrastructures** and how can a **confidential computing-based security model** be validated to ensure **compliance with defence security standards?**

RQ3:

How can interoperability between cloud, edge and HPC environments be ensured in a defence cloud infrastructure while maintaining security and operational efficiency?

Introduction	Thesis	Validation	Results	Conclusion

Architecture, Deployment and Methodology

Architecture and Design (NAFv4/WAF)

- NATO Architecture Capability Team, ArchiMate Modeling Guide for NAFv4
- NAFv4, ArchiMate, Archi

Deployment Context and Implementation

- AWS
 - Accounts: GroupIT, AWS Guild Germany
 - Region: eu-west-1 (Ireland), eu-central-1 (Frankfurt)
- AWS CLI, CloudFormation, YAML-Templates, JSON Formats, Shell-/Python-Scripts

Architectural and Experimental Methodology

RQ1: Architectural modelling using NAFv4 conceptual views (e.g. NCV-2, NSOV-3, NSV-6) to derive compliance and mission-driven system architecture.

RQ2: Implementation of Confidential Computing with at least two TEE nodes (Nitro Enclaves, AMD SEV-SNP) including Remote Attestation and Policy-based Secret Management via Vault with Logging.

RQ3: Development of secure interface layer (API Gateway, NGVA schema) to demonstrate interoperability and NATO compliance.

Introduction	Thesis	Validation	Results	Conclusion

"It has resulted in the minimum number of ArchiMate element use to fulfil the needs of NAFv4, although there is some repetition of *object* usage. It is **not** intended to be a 1:1 mapping of ArchiMate to NAFv4." [4]

Figure 1: Example - NCV-1 [4]

Figure 2: NAF Grid [4]

Figure 3: NAV-1 - OmniAware Standards and Reference Architecture

"AWS Well-Architected [...] Built around six pillars - operational, excellence, security, reliability, performance efficiency, cost optimization, and sustainability - [...] to evaluate **architectures** and implement scalable designs" [5]

Best Practices

- Drawing and diagramming tools: Draw.io,
 Creately, Figma, [...]
- AWS architecture icons

Figure 4: Example - Git to S3 Webhooks [5]

Introduction	Thesis	Validation	Results	Conclusion

Figure 5: PHM - High-Level Overview of the Reference Architecture

Figure 6: NSV-4a - PHM LZ Policy Enforcement

Figure 7: NSV-6 - PHM LZ System State Lifecycle

RQ2: What are the **key security challenges in defence cloud infrastructures** and how can a **confidential computing-based security model** be validated to ensure **compliance with defence security standards**?

Implementation

- AWS
 - Accounts: GroupIT, AWS Guild Germany
 - Region: eu-west-1 (Ireland), eu-central-1 (Frankfurt)

Standards, Frameworks and Best Practices

- AWS Well-Architected Framework
- AWS Foundational Technical Review

Figure 8: CI/CD Pipeline for Secure Deployment of Landing Zone Components

Introduction Thesis Validation Results Conclusion

RQ2: What are the **key security challenges in defence cloud infrastructures** and how can a **confidential computing-based security model** be validated to ensure **compliance with defence security standards**?

Deployment Methodology for the Prototype

- Path A: Nitro Enclave-Based Remote Attestation
- Path B: SEV-SNP-Based Remote Attestion

Path B (completed) contained

- Environment Setup, Attestation Channel Setup, Vault Deployment and Joint Configuration
- Key Policy Enforcement, Test Secret Provision and Access, Validation and Logging
- Fully automated/partially automated deployment

Component Layer	Role in Attestation Workflow	Remarks	
Confidential Runtime	Hosts the trusted workload	1x EC2 instance with	
Environment	within a hardware-rooted en-	SEV-SNP	
	clave	1x EC2 instance with	
		Nitro Enclave-enabled	
HashiCorp Vault	Key management service that	Deployed with TLS;	
(OSS)	enforces attestation-gated se-	runs standalone (or in	
	cret release	dev mode for PoC)	
Verifier Component	Validates attestation evidence	Implemented via Vault	
	against expected measure-	plugin or external pol-	
	ments and metadata	icy enforcement mod-	
		ule	
Attestation Evidence	Produces signed reports re-	sev-tool (SEV-SNP) or	
Generator	flecting enclave state and	Nitro Enclave SDK at-	
	identity	testation interface	
Secrets Policy Engine	Applies constraints for key re-	Implemented via Vault	
	lease (e.g. PCR hash, enclave	HCL policy or custom	
	measurement, expiry)	validation logic	
TLS Certificate Infras-	Secures communication be-	Self-signed or CA-	
tructure	tween Vault and clients/veri-	issued; configured for	
	fiers	Vault API endpoints	
Test Secret (AES-256	Validates the complete	Rotated regularly, used	
key)	attestation-driven release	for decrypting synthetic	
	workflow	mission payload	

Table 1: Remote Attestation and Key Management Prototype

Introduction	Thesis	Validation	Results	Conclusion
--------------	--------	------------	---------	------------

RQ2: What are the **key security challenges in defence cloud infrastructures** and how can a **confidential computing-based security model** be validated to ensure **compliance** with defence security standards?

```
Resources:
          VaultInstance:
            Type: AWS::EC2::Instance
            Properties:
              InstanceType: t3.micro
              ImageId: !FindInMap [RegionMap, !Ref "AWS::Region", UbuntuAMI]
              KeyName:
                !ImportValue
                  Fn::Sub: "${InfraStackName}-KeyPair-Name"
              SubnetId:
                !ImportValue
                  Fn::Sub: "${InfraStackName}-PrivateSubnet-ID"
              SecurityGroupIds:
                - !ImportValue
                    Fn::Sub: "${InfraStackName}-Internal-Security-Group-ID"
              IamInstanceProfile:
                !ImportValue
                  Fn::Sub: "${InfraStackName}-InstanceProfile-Name"
              UserData:
                Fn::Base64: !Sub |
                  #!/bin/bash
21
                   set -e
23
24
                   hostnamectl set-hostname OmniAware-EC2-Vault
25
                   echo '127.0.0.1 OmniAware-EC2-Vault' >> /etc/hosts
                   snap install aws-cli --classic
                   apt-get update && apt-get install -y jq curl wget git cmake

→ build-essential \

                    linux-headers-$(uname -r) libssl-dev pkg-config autoconf automake

→ libtool \

                    protobuf-compiler libprotobuf-dev gnupg

→ software-properties-common unzip
```

Figure 9: Excerpt of Instance Deployment - OmniAware-EC2-Vault

```
import jwt
        from datetime import datetime, timedelta, timezone
        private_key = open("private.key", "r").read()
        payload = {
            "sub": "attester-001".
            "aud": "vault",
            "iss": "sev-snp",
            "nonce": "abc123",
            "iat": datetime.now(timezone.utc),
             "exp": datetime.now(timezone.utc) + timedelta(minutes=5),
11
             "report": open("/tmp/guest_report.b64", "rb").read().hex()
12
13
        token = jwt.encode(payload, private_key, algorithm="RS256")
14
        print(token)
15
```

Figure 10: Minimal Python tool to generate a signed SEV-SNP attestation JWT

Introduction	Thesis	Validation	Results	Conclusion

RQ3: How can **interoperability** between **cloud, edge** and **HPC** environments be ensured in a **defence cloud infrastructure** while maintaining **security** and **operational efficiency**?

```
"id": "http://json-schema.org/draft-04/schema#",
         "$schema": "http://json-schema.org/draft-04/schema#",
         "description": "Core schema meta-schema",
         "definitions": {
             "schemaArray": {
                 "type": "array",
                 "minItems": 1,
                 "items": { "$ref": "#" }
11
             "positiveInteger": {
                 "type": "integer",
12
                 "minimum": 0
13
14
             "positiveIntegerDefault0": {
15
                 "allOf": [ { "$ref": "#/definitions/positiveInteger" }, { "default": 0 } ]
17
             "simpleTypes": {
18
                 "enum": [ "array", "boolean", "integer", "null", "number", "object",
                 → "string" ]
20
             "stringArray": {
21
22
                 "type": "array",
23
                 "items": { "type": "string" },
                 "minItems": 1,
```

Figure 11: Excerpt of JSON Schema Draft-04 - Sample Telemetry Schema for Test Purposes

Figure 12: NGVA - Sample JSON Data Model, simplified

Path B - SEV-SNP

```
root@OmniAware-EC2-SEV-SNP-Ubuntu:/var/snap/amazon-ssm-agent/11320# sevctl ok
 PASS ] - AMD CPU

    Microcode support

          - Secure Memory Encryption (SME)

    Secure Encrypted Virtualization (SEV)

    Encrypted State (SEV-ES)

            - Secure Nested Paging (SEV-SNP)
 SKIP

    VM Permission Levels

 SKIP

    Number of VMPLs

 PASS

    Physical address bit reduction: 0

            - C-bit location: 51
 PASS
 PASS
            - Number of encrypted guests supported simultaneously: 0
 PASS ]
            - Minimum ASID value for SEV-enabled, SEV-ES disabled guest: 0
 FAIL

    SEV enabled in KVM: Error - /sys/module/kvm_amd/parameters/sev does not exist

            SEV-ES enabled in KVM: Error - /sys/module/kvm_amd/parameters/sev_es does not exist
            - Reading /dev/sev: /dev/sev not readable: No such file or directory (os error 2)
            - Writing /dev/sev: /dev/sev not writable: No such file or directory (os error 2)
           - Page flush MSR: DISABLED

    KVM supported: Error reading /dev/kvm: (No such file or directory (os error 2))

         - Memlock resource limit: Soft: 468017152 | Hard: 468017152
```

Figures 13: OmniAware-EC2-SEV-SNP - Excerpts of SEV-SNP status checks

```
root@OmniAware-EC2-SEV-SNP:/usr/bin$ dmesg | grep -i sev
[    0.652292] Memory Encryption Features active: AMD SEV SEV-ES SEV-SNP
[    0.880178] SEV: Using SNP CPUID table, 64 entries present.
[    1.411038] SEV: SNP guest platform device initialized.
[    6.173181] systemd[1]: Hostname set to <OmniAware-EC2-SEV-SNP>.
[    8.920888] sev-guest sev-guest: Initialized SEV guest driver (using vmpck_id 0)
```

Figures 14: OmniAware-EC2-SEV-SNP - Excerpts of SEV-SNP guest driver init

Introduction Thesis

Figures 15: OmniAware-EC2-SEV-SNP - Excerpts of TCB attestation (1/2)

Figures 16: OmniAware-EC2-SEV-SNP - Excerpts of TCB attestation (2/2)

Validation Results Conclusion


```
root@OmniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320#
                                                                    vault write -f transit/keys/attestation-test
Key
                          Value
allow_plaintext_backup
                          false
auto_rotate_period
                          0s
deletion_allowed
                          false
derived
                          false
                          false
exportable
imported_key
                          false
                         map[1:1749907186]
keys
latest_version
min_available_version
min_decryption_version
min_encryption_version
                         attestation-test
name
supports_decryption
                          true
supports_derivation
                          true
                          true
supports_encryption
supports_signing
                          false
                         aes256-gcm96
type
```

Figure 17: OmniAware-EC2-Vault - Vault Key Attestation-Test - Transit Key Creation

Figure 18: OmniAware-EC2-Vault - Vault Message Encryption - Encoding of Plaintext with base64 and encryption with Transit Key

```
root@OmniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# vault write transit/decrypt/attestation-test ciphertext
="vault:v1:gL5CNusf80cRQf27GA8ti7suQNUT1XeuEj9U3JYbcQ6w3vd05zLD9YAk5Q=="
Key Value
--- -----
plaintext SGFsbG8gT21uaUF3YXJl
```

Figure 19: OmniAware-EC2-Vault - Vault Message Decryption - Decryption with Transit Key

Introduction Thesis Validation Results	Conclusion
---	------------

Path B - Vault, Secret Transit Engine

```
curl -sk --request POST \
    --url "$VAULT_ADDR/v1/auth/jwt/login" \
    --header "Content-Type: application/json" \
    --data "{\"jwt\": \"$JWT_TOKEN\", \"role\": \"sev-snp-role\"}"
    {"request_id":"cc9e88f4-0c54-91d3-fb5e-cd706a520b3a","lease_id":"","renewable":false,"lease_duration":0,"data":null,"wrap_info":null,"warnings":null,"auth":{"client_token":"hvs.CAESICbrRNAyQfKG7W3suaC8sMgh0JkH62756xvv7YLEKDIHGh4
KHGh2cy51VldEVjhaS1NMYmVrdWVIVHM2VDE3YUs","accessor":"PSIb6VPgxUmbUmsYFQPjEn6U","policies":["attestation-policy","default"],"token_policies":["attestation-policy","default"],"metadata":{"role":"sev-snp-role"},"lease_duration":36
00,"renewable":true,"entity_id":"b31ad396-663f-0ecd-1821-658d1f5beb89","token_type":"service","orphan":true,"mfa_r
equirement":null,"num_uses":0},"mount_type":""}
root@OmniAware-EC2-SEV-SNP-Ubuntu:/opt/snpguest-test#
```

Figure 20: OmniAware-EC2-SEV-SNP-Ubuntu - JWT-Login via Remote Attestation

```
root@OmniAware-EC2-SEV-SNP-Ubuntu:/opt/snpguest-test# vault write transit/decrypt/attestation-test ciphertext="vault:v1:VW1/P4nqSUHRDEb1CjEmiVAwNS6KtjThRjlj82tzTxI+GFMZ"

Key Value
--- -----
plaintext U0dWc2JnPT0=
root@OmniAware-EC2-SEV-SNP-Ubuntu:/opt/snpguest-test#
```

Figure 21: OmniAware-EC2-SEV-SNP-Ubuntu - Vault Message Decryption with Transit Key

```
aws ssm start-session --target i-05e8ce429e30b0fee --region eu-west-1
root@OmniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# cat /var/log/vault/audit.log | jq
    "id": "2bf169ae-d3e3-f571-f4f2-d2f3974f8b34",
    "namespace": {
      "id": "root"
    "operation": "update",
    "path": "sys/audit/test"
  "time": "2025-06-15T17:13:31.375772546Z",
  "type": "request"
    "accessor": "hmac-sha256:c85b42170c62be63fd91e27229e98bbed8014ffb6d7a587428271d1e3669da78",
    "client token": "hmac-sha256:af102540ff28304357d3e5b516e2b1aa1b1c6afdc511d264a5979c6d1317ca29",
    "display_name": "root",
    "policies": [
      "root"
    "policy_results": {
      "allowed": true,
      "granting_policies": [
          "type":
          "name": "root",
          "namespace_id": "root",
          "type": "acl'
    "token_policies": [
      "root"
    "token_issue_time": "2025-06-15T16:19:42Z",
    "token_type": "service"
```

Figure 22: OmniAware-EC2-Vault - Vault Audit-Log-Events (1/2)

Introduction Thesis **Validation** Results Conclusion

Secure Ingest Gateway - Image

~/Downloads/4.3_Scure-Ingest-API (0.41s)
cat 4.3_Secure-Ingest-API_Sample\ Picture.jpg | base64 > 4.3_Secure-Ingest-API_Sample\ Picture.jpg.txt

Figure 23: Encoding of Sample Picture with base 64

/9j/4AAQSkZJRgABAgAAAQABAAD/ 2wBDAA0JCgsKCA0LCgsODg0PEyAVExISEyccHhcgLikxMC4pLSwz0ko+MzZGNywtQFdBRkxOUlNSMj5aYVpQYEpRUk// SITAABMJIABMJIAMBMAKAIAJAIKAAAAAAAAIKACBJBIAESIKIKBBMSIJIAJIAAAAAAAAAAAAIJAIJAAAAAHJCQQJqEwBJBIhJBIqAAJAAAAAAAAAA AAAAAAAAAAIJAAAAAAAAAAAAAAAAAAAABMATAJIAlATAJAAIkAAAAAAACJISITAJCBMSAETBMTAlBKAkAESCBIIAAAAJIlATBMSImBKJAESIkESAA AAAkgAAABMBMAAkgkhMAkhMEoEoEokAAAAAAAAKBQAAAAAQAAAAAAAABEgAAAmFJhAAAAAAABKxIRIAIkkSKhJEoExJCYJiYCRAEhEgAAAAAA AAAAAFAAATEKAAAAABAAUEBQAQFBAUAAMAAAAAEATAAAEkJKAAAABEhEgiREgRIiQAiQAAAAATATAATAJITAAAAAABCQiYAAAAAESRAAAAAACCSCYAAAA AAAAAAAACtgRIkAAkhIgAAAAAAAEwAAAAAkiYExIhIiQARIAAAiQAARIAAiQiQiYkAAIkAAAAAAABQAQAAFAAAAAMJBEiAAAAAAABAUEBQAAAAAA gkhMBMCYCQAAAAAAAAAAAAAAAAAAAAAAAAAAABQQFAAJgBAAUQSAACUCQRNZAAAAAAEwIkAAQFAAAAAABAUAAAEAA\EqAAAAAAAiYJARJEgAAAAAAmBIAA AAAALBQQFBIkBBICJCJISCJAESIkBBIAAAUEABQAAAAAAAQFABAAUAEAAAAABQAAQAFEJKAAACpgSAAAAAAAEBQAAAAAQAAAFAAAAABAUAAkCCUSA AAAACCYCUSAAAAAAJgSAAAAiQAiQAAAQTAAIAAiURMAkgAAAAAAAAAAACJgAAAAAAAAiQAAAAAAAtEgAFBAAVAgCQIEokIkAARIAAABQACYAIkAAAAAA AAQFAAAAAABAUAAEBQAAASJAQTEwAAAoIAAmAmAkAUiUAABQQCJAFBAAAUAAAAEBQAQFAAAAAlAAmEkAAAAAkAABEgACYEoEoEwBMCYEoEgEEoEoEwAA gEEoJMAAAAAARIAARIRIAAiQgAAAAAAAAAAAAAAAAAJmJAUgSQkolQBCJQTEwEiEgAiQAAFiQAAAAAAAAAAAAAAAUEBQACJQFAAAAABAÜEBUSSAAAA AAAAAAAAJgSiQFBAAAAUEAAABQAQAAAAAAAAAAAAAEkSgSAEJglEgAAAAEwACYAAAAAABEkARMCYAIAAAAAAiQhJEoJRIICYAAAAAAAAESAAAIk AABQAAJgAAEgABEgAAAAAAAAAAAIJgABACAAAAAAAAAImCYkRMAkIAAASQAAAAAAABEhCSJAAQSQWAAAAAAAAJIAAABIUAiQAAAAAAAAAABEQQFB

Figure 24: Excerpt of base64 encoded Sample Picture

Figure 25: Sample Picture

Introduction Thesis **Validation** Results Conclusion

Insights - Architecture, Design and Implementation

NAFv4-Driven Modelling Approach

- Strategic-to-runtime traceability via NSV, NPV and NSOV views
- Systematic decomposition aligned with mission and compliance needs

Security Architecture via Trusted Views

- NSV-4a/6 and NPV-3 modelled trust anchors, attestation flows and key usage
- Interfaces (NSOV-2/3) implemented as zero-trust API boundaries

TEE-Based Security Execution with Vault

- Dual-path attestation validated via AWS Nitro Enclaves and AMD SEV-SNP
- JWT-based trust workflows confirmed cryptographically and operationally
- Vault Transit Engine enforced data-in-use protection with policy-bound secrets

Ingestion Pipeline

• NGVA API Gateway and structured logs enabled secure ingest to AWS Datalake

Future Extensibility

- The design allows optional integration of sensor modules, Digital
 Twin simulations and real-time data visualisation layers
- Architecture supports modular extension without compromising core trust primitives
- Vault-based architecture and JWT workflows are modular and extendable to other policy engines or enclaves
- Prototype components (API Gateway, telemetry ingestion) can be hardened and scaled via IaC (e.g. Terraform, OPA)
- Next-gen extensions could target fully automated trust pipelines and policy-controlled data access

Introduction	Thesis	Validation	Results	Conclusion

Challenges

01.02.2025 - 30.06.2025

Phase I: Limited project maturity and parallel exam preparation reduced available focus and continuity.

01.02.2025 - 31.03.2025

Phase II: Increased project scope and involvement in strategic and BD-related tasks led to competing priorities and fragmented capacity.

01.04.2025 - 31.05.2025

Phase III: Tight timelines and coordination efforts across stakeholders posed significant constraints on implementation and documentation.

01.06.2025 - 21.06.2025

Phase IV: Final synchronisations under deadline pressure, including printing logistics and latency, introduced additional stressors.

22.06.2025 - 30.06.2025

Cross-phase

- Balancing defence-grade implementation depth with academic formalism
- Aligning security design iterations with rapidly evolving AWS primitives
- Coordinating distributed team input across time zones and priorities
- Translating complex experimental architecture (e.g. Confidential Computing, Remote Attestation) into reproducible thesis artefacts
- Managing dual publication requirements (academic and industrial)
 without overlap or disclosure risk

Introduction	Thesis	Validation	Results	Conclusion

Evaluation and Outlook

Research Answers

- Architecture is **NAFv4**-compliant, mapped to **NATO** models and implemented using formalised **cloud-native** views (via ArchiMate).
- Key security challenges such as **trust gaps** and **classified data** have been mitigated through **TEE**-based **policy enforcement**, Vault integration and **attestation**.
- A secure, interoperable interface architecture was implemented, separating data/control planes and aligning with zero-trust networking principles in line with NATO guidelines

OmniAware sets the stage for a trusted digital doctrine, enabling **sovereign**, **NATO**-aligned defence architectures that scale from **PoC** to full **operational readiness**. Its adaptable blueprint can inform future procurement, certification and capability planning initiatives across multi-domain coalitions.

Operational Integration

Platform design supports integration with sensor networks, mission systems and simulation tools.

Future Extensions

Next steps include RT visualisation, predictive simulations and Albased decision support via Digital Twin and confidential analytics pipelines. Potential extensions include systems with TEE-based execution for tactical integrity and operational safety.

Scalability Across Domains

The system is modular and scalable across NATO, EU and national deployments, supporting both edge and HPC use cases

References

- [1] Capgemini, 2024 Integrated Annual Report, Paris, France, annual report, May 7, 2025. Available: https://reports.capgemini.com/2024/en/.
- [2] Capgemini, 2024. Capgemini and AWS expand strategic collaboration to enable broad enterprise Generative AI adoption. [Online]. Available: https://www.capgemini.com/news/press-releases/capgemini-and-aws-expand-strategic-collaboration-to-enable-broad-enterprise-generative-ai-adoption/
- [3] NATO Architecture Capability Team, 2025. ArchiMate Modeling Guide For the NATO Architecture Framework Version 4. [Online]. Available: https://www.nato.int/nato_static_fl2014/assets/pdf/2025/2/pdf/2502-NAFv4-ArchiMate.pdf.
- [4] Amazon Web Services, 2024. [Online]. Available: https://aws.amazon.com/architecture/well-architected/.
- [5] J. Salvermoser and V. Pfeil, 2025. OmniAware Use Case Reference Architecture, Reference Architecture, Capgemini Internal.

Valentin Pfeil
Institute for Software Technology
Research Institute CODE
University of the Bundeswehr Munich
valentin.pfeil@unibw.de
https://www.unibw.de/code

Q&A

Valentin Pfeil
Institute for Software Technology
Research Institute CODE
University of the Bundeswehr Munich
valentin.pfeil@unibw.de
https://www.unibw.de/code

