MASTER THESIS

CONNECTED DEFENCE:
NEXT-GENERATION DATA
PLATFORM FOR MILITARY
INTELLIGENCE AND
OPERATIONS

VALENTIN PFEIL

University of the Bundeswehr Munich,

Department of Computer Science,
Institute for Software Technology

SUPERVISED BY
PROF. DR. WOLFGANG HOMMEL,
DR. KARL FURLINGER

JUNE 25, 2025

Copyright © 2025 Valentin Pfeil

Licensed according to Creative Commons Attribution-ShareAlike 4.0
(CC BY-SA 4.0)

Ideas alone have little worth. The value of an innovation lies
in its practical implementation.

— WERNER VON SIEMENS

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Prof. Dr. Wolfgang Hommel for his commitment
over the past months. Especially for proofreading, discussions and efforts to create a
proper working atmosphere.

There is also much gratitude for giving me the opportunity and trust to do my master’s
thesis under his supervision. He has always been a source of inspiration and motivation
for true passion. And even so, he gives the best example of how to stay grounded despite
great success.

I would also like to express my sincere gratitude to Dr. Karl Fiirlinger for his support.
His guidance on my path helped me to gaint clarity, orientation and specialisation,
particularly in critical areas.

Then, I would like to thank M. Sc. Alexander Vogel, M. Sc. Christian Nilsson, M.
Sc. Frank Keienburg, as well as the entire OmniAware team, for their valuable support.
The Cloud Native Hyperscalers subpractice of Capgemini’s Business Unit Germany
enabled the collaboration with the University of the Federal Armed Forces in Munich.
This cooperation was made possible through Capgemini’s involvement in the Strategic
Collaboration Agreement with Amazon Web Services, which also provides funding sup-
port for innovative projects such as this one. Without Capgemini’s strategic contribution
and the backing of the Strategic Collaboration Agreement, the development of a more
authentic and immersive product would not have been achievable.

My thanks also go to my friends, colleagues and comrades, who are not just well-
meaning observers but companions who have experienced the same challenges, failures
and successes. We have come a long way together. Notably, one of my dearest friends
and colleagues Christoph, who excelled in machine learning, showed me what it takes
to push your limits and guided me on my path to cloud engineering.

I would also like to emphasise the unconditional love and support I have received
from my family. In particular, my grandparents have inspired me to be the best version
of myself. My aunt and cousins have always given me advice and support. Last but not
least, my uncle Yakup has made me interested in computer science, guided me through
it and has always been by my side as a role model but also as a mentor.

\V

ABSTRACT

The increasing complexity of multinational defence operations demands secure and
scalable systems for managing data under strict sovereignty and security requirements.
This study presents a Proof of Concept for a Connected Defence platform, focusing on
the design and implementation of the core system architecture as the central element of
the project. Based on the North Atlantic Treaty Organization Architecture Framework
Version 4, the core integrates cloud-based infrastructure, advanced security protocols
and standardised interfaces to enable secure, efficient and interoperable data exchange
across diverse stakeholders.

The core system is designed as a robust and modular foundation, emphasising flex-
ibility and scalability through the integration of cloud and edge computing technologies.
A key focus is the implementation of advanced security mechanisms to ensure data
sovereignty, confidentiality and compliance with stringent defence regulations. Addi-
tionally, the development of standardised and extensible interfaces plays a critical role
in enabling seamless communication and interoperability between diverse components
and systems.

While optional extensions, such as a sensor module, a situational awareness plat-
form and a digital twin simulationssystem, are outlined as potential future components,
the Proof of Concept focuses exclusively on validating and implementing the core sys-
tem. This foundation provides the necessary infrastructure to later incorporate real-time
visualisation, predictive simulations and operational data processing, demonstrating the
platform’s potential for supporting advanced defence operations.

By leveraging high-performance computing alongside cloud and edge technologies,
the Proof of Concept addresses key challenges in modularity, secure communication
and scalability. This research establishes a clear and actionable architectural blueprint,
showcasing the feasibility and technical robustness of the core system as a critical step
toward developing a next-generation Connected Defence platform.

Vii

CONTENTS

CONTENTS
Contents viii
1 Introduction 1
2 Background 5
2.1 OmniAware o e e 6
2.2 NATO Architecture Framework Version4 8
2.3 Confidential Computing and Data Sovereignty 12
2.4 Cloud, Fog and Edge Computing in Defence 20
2.5 High-Performance Computing for Defence Applications 28
2.6 Sensor Fusion and Situational Awareness 31
2.7 C4ISR: Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance 33
2.8 Related Work e 34
2.9 Methodological Approach and Structural Overview 36
3 Architecture and Design 37
3.1 Overview and Viewpoints L. 38
3.2 Cloud, Edge and High-Performance Computing 50
3.3 Confidential Computing 72
34 Interfaces e 83
4 Implementation 91
41 Deployment 91
42 Security and Compliance Controls 101
43 Interfaces e e 123
44 Validation e 126
5 Insights 137
51 Cloud and Edge Computing 137
52 Confidential Computing 138
53 Interoperability L oo 140
6 Conclusion 143
6.1 Evaluation e 143
6.2 Outlook 145
References 147
Appendix - Architecture and Design: NAFv4 155
Model Descriptions L 155
Appendix - Implementation: Source Code and Deployment Artefacts 159
Deployment - CI/CD-Pipeline. 159
Core Infrastructure 0 e 171
Security and Compliance Controls - Remote Attestation 218

viii

Interfaces - API Gateways

CONTENTS

ix

INTRODUCTION

The increasing complexity of modern defence operations demands secure, scalable and
interoperable information technology (IT) infrastructures to support mission-critical
applications. Multi-domain operations — spanning land, air, sea, space and cyber —
require highly resilient and adaptable computing frameworks capable of processing
and analysing vast amounts of data in real time. Current defence IT architectures of-
ten suffer from fragmentation, limited interoperability and security vulnerabilities that
can significantly impact operational effectiveness and strategic decision making [23], [26].

Cloud computing has emerged as a key enabler of modern defence capabilities,
providing elastic computing, scalable storage and a globally distributed network in-
frastructure. The ability to efficiently handle large workloads while maintaining data
sovereignty and security is critical for defence applications. Cloud architectures facilitate
mission-critical operations by providing high availability, automated resource manage-
ment and the ability to deploy advanced security controls such as encryption, access
control policies and zero-trust architectures [31], [41].

Leading cloud providers, such as Amazon Web Services (AWS), have tailored solu-
tions for the defence sector, ensuring compliance with military security requirements
while maintaining the benefits of cloud scalability and efficiency. In the US, AWS
GovCloud, for example, provides an isolated cloud environment that meets stringent
regulatory and compliance standards for defence and government applications. In ad-
dition, AWS Nitro Enclaves provide confidential computing capabilities that enable
the secure execution of sensitive workloads within cryptographically attested enclaves,
mitigating the risk of data exposure and unauthorised access [14], [37].

Recognising the increasing demand for digital sovereignty within Europe, AWS
has introduced the AWS European Sovereign Cloud, one or many independent cloud
regions within the European Union (EU) designed to meet European data residency,
compliance and operational control requirements. It is set to launch by the end of 2025.
This initiative ensures that European governments, defence agencies and critical indus-
tries retain full control of their data while benefiting from AWS global infrastructure
and advanced security features. By leveraging physically and logically separate cloud
regions, AWS ensures compliance with strict European regulations while enabling secure
multi-domain operations [65].

However, despite the advantages of cloud adoption, integrating cloud computing
into defence environments introduces new challenges related to security, compliance
and interoperability. Defence organisations require stringent guarantees of data con-
fidentiality, integrity and sovereignty, particularly when operating in coalition-based
or untrusted environments. Trusted Execution Environments (TEE) and confidential
computing play a critical role in addressing these challenges by ensuring that data
remains protected even during processing through hardware-enforced security mecha-
nisms. These developments set the stage for exploring secure and compliant defence
cloud architectures [56].

INTRODUCTION

Capgemini is a global leader in consulting, technology services and digital transfor-
mation with a strong focus on innovation and modern solutions for various industries,
including defence. With a presence in over 50 countries, Capgemini provides strategic
guidance and technological expertise to drive digital transformation and operational
excellence.

Within Capgemini, the Business Unit (BU) Germany plays a significant role in
delivering tailored solutions for German enterprises and public sector organisationa-
tions. The BU Germany is structured into multiple business lines that focus on specific
technological and industry-oriented domains.

The research is embedded within the Application Business Line (ABL) Practice
Cloud and Custom Application (C&CA), which specialises in designing, developing and
implementing scalable cloud architectures and customised software solutions. C&CA
focuses on integrating advanced cloud technologies, ensuring compliance with indus-
try standards and optimising operational efficiency for mission-critical applications.
By leveraging Capgemini’s global expertise and local market knowledge, the Cloud
and Custom Application supports clients in achieving secure, interoperable and high-
performance cloud infrastructures tailored to their specific operational needs.

As part of its strategic initiatives in cloud computing and digital transformation,
Capgemini has established a long-term Strategic Collaboration Agreement (SCA) with
AWS. This agreement strengthens the partnership between the two companies, enabling
joint efforts to drive innovation, accelerate cloud adoption and develop industry-specific
solutions leveraging AWS’s advanced cloud services. The SCA focuses on enhancing
cloud security, scalability and operational efficiency while supporting enterprises in
their transition to cloud-native architectures. Additionally, the SCA provides funding
mechanisms to support research and development projects that align with its strategic
goals.

A key aspect of the SCA is the expansion of Capgemini’s AWS Centers of Excellence
(CoEs), which provide expertise and support for clients in various industries, including
defence and public sector operations. Through this collaboration, Capgemini and AWS
facilitate the adoption of modern cloud technologies, including confidential computing,
artificial intelligence (AI) -driven analytics and resilient cloud infrastructures. The SCA
also enables the deployment of solutions that embed services such as AWS GovCloud
and AWS Nitro Enclaves to ensure compliance with stringent regulatory requirements,
particularly for highly sensitive and mission-critical applications.

By leveraging the SCA, Capgemini is positioned to support organisations in achiev-
ing secure, scalable and compliant cloud solutions. This collaboration aligns with the
broader goals of digital sovereignty, operational agility and advanced cloud security,
providing a strong foundation for modern defence and enterprise cloud environments.
Furthermore, the funding mechanisms provided by the SCA directly contribute to re-
search initiatives such as this thesis, whose PoC aligns with the agreement’s objectives,
allowing AWS to support the project’s funding and technical enablement.

HENSOLDT, a key customer of Capgemini in the defence sector, is a German
defence technology company specialising in sensor solutions for surveillance, recon-
naissance and electronic warfare. The company develops advanced systems for land,
air, sea and cyber operations with a strong focus on sensor fusion and Al-driven analytics.

One of HENSOLDT’s latest innovations is Ceretron, a sensor suite designed for
real-time (RT) data fusion and enhanced situational awareness in complex operational
environments. As cloud computing plays an increasing role in defence applications,
integrating scalable cloud solutions could further enhance Ceretron’s capabilities by
enabling advanced data processing, Al model updates and secure, cross-platform data
sharing. This aligns with HENSOLDT’s digital transformation strategy, leveraging cloud
technologies to optimise operational efficiency and decision-making in mission-critical
scenarios.

This thesis aims to investigate the design and validation of a secure, interoperable
and NAFv4-compliant defence cloud architecture leading to the first research question.

RQ1: How can a cloud-native defence architecture be designed to ensure compli-
ance with the NATO Architecture Framework Version 4 (NAFv4) while supporting
secure and scalable mission-critical operations?

Ensuring compliance with NAFv4 in a cloud-native defence environment requires
a structured architectural approach that aligns with NATO’s predefined viewpoints,
including operational, systems and technical perspectives. A defence cloud must facil-
itate multi-domain integration, interoperability with coalition networks and mission
assurance while maintaining a modular and scalable system design. The architectural de-
sign must incorporate Infrastructure-as-Code (IaC) principles, containerised workloads
and dynamic orchestration mechanisms that adhere to NAFv4-defined interoperability
standards. Additionally, the architecture must support secure information exchange
across different classification levels while enforcing zero-trust security models and role-
based access control (RBAC). Ensuring resilience against cyber threats and operational
disruptions requires embedding fault tolerance mechanisms, redundant data pathways
and decentralised decision-making processes.
Chapter 2 outlines the theoretical foundations of NAFv4, detailing how its principles
guide modern defence IT infrastructures, while Chapter 3 explores how cloud-native
technologies can be integrated into an NAFv4-compliant design without compromising
operational efficiency.

RQ2: What are the key security challenges in defence cloud infrastructures and
how can a confidential computing-based security model be validated to ensure com-
pliance with defence security standards?

Defence cloud infrastructures are prime targets for cyber espionage, data exfiltration
and advanced persistent threats (APT) due to the sensitivity of mission-critical work-
loads. Traditional encryption mechanisms protect data at rest and in transit, but ensuring
data-in-use confidentiality remains a challenge. Confidential computing, leveraging TEE,
provides an additional layer of security by isolating sensitive workloads at the hardware
level. However, validating its effectiveness in a defence context requires assessing remote
attestation protocols, enclave integrity verification and cryptographic key management
strategies. Compliance with defence security frameworks such as the National Institute

3

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

INTRODUCTION

of Standards and Technology (NIST) Confidential computing guidelines, International
Organization for Standardization (ISO)/International Electrotechnical Commission (IEC)
27001 and military-specific risk assessment models must be ensured. Additionally, real-
world adversarial testing is necessary to evaluate security validation methodologies
through penetration testing, compliance verification and cryptographic performance
assessments.

While confidential computing addresses data-in-use security challenges, interop-
erability between cloud, edge and high-performance computing (HPC) environments
introduces additional complexities. This requires investigating how defence systems
can securely exchange data and workloads across diverse computing paradigms while
maintaining operational efficiency, leading to the third research question.

RQ3: How can interoperability between cloud, edge and HPC environments be
ensured in a defence cloud infrastructure while maintaining security and operational
efficiency?

Modern military operations demand real-time data fusion across cloud, edge and
HPC infrastructures, creating significant interoperability challenges. Cloud services pro-
vide scalable computing power, edge devices enable real-time battlefield analytics and
HPC environments facilitate computationally intensive simulations. Seamless integration
across these environments requires low-latency communication channels, secure feder-
ated identity management and cross-domain authentication. Additionally, differences
in security postures, data formats and orchestration frameworks must be reconciled to
ensure uninterrupted data flow. Secure API gateways, standardised message-passing
protocols (e.g. Message Queuing Telemetry Transport (MQTT), Google Remote Proce-
dure Call (gRPC) or Data Distribution Service (DDS) and distributed ledger-based access
controls can mitigate interoperability risks while ensuring secure cross-domain oper-
ations). The architecture must also incorporate self-adaptive networking mechanisms
capable of dynamically routing workloads between cloud, edge and HPC nodes based
on network congestion, computational demand and security policies.

Chapter 4 describes the technical implementation of these interoperability mechanisms,
while Chapter 5 evaluates their performance through empirical stress tests, latency
benchmarking and resilience assessments under mission-critical conditions.

To answer these research questions, this thesis adopts a design science method-
ology, combining theoretical analysis with a practical PoC implementation. The PoC
demonstrates the feasibility of a confidential and secure cloud architecture, evaluating
its security properties, scalability and performance impact in a realistic defence scenario.
By addressing the challenges of secure cloud adoption in defence, this work aims to
contribute to the development of next-generation defence IT infrastructures, capable of
providing trusted computing environments in coalition-based and sovereign military
contexts [19], [32].

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight
TODO: To learn!

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight
Bold, but not even partially!

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

BACKGROUND

Summary: This chapter provides the theoretical and methodological foundation for
the design and implementation of a secure, interoperable and sovereign data platform
tailored to defence applications. It consolidates the architectural paradigms, compliance
frameworks and technological principles upon which the system architecture developed
in Chapter 3 is built. Rather than detailing the system design itself, which follows in
later chapters, this section focuses on formal modelling methodologies, core security
mechanisms and deployment paradigms that inform the architectural decisions and
implementation artefacts.

The foundational elements covered herein — namely the NATO Architecture Frame-
work Version 4 (NAFv4), Confidential Computing mechanisms and distributed cloud-
edge computing fabrics — establish the structural underpinnings for the design realisa-
tion presented in subsequent chapters. These concepts are essential for understanding
the platform’s alignment with defence-grade standards, mission assurance requirements
and operational interoperability objectives.

The chapter begins by positioning OmniAware as a federated and extensible defence
data platform developed under Capgemini’s Strategic Collaboration Agreement (SCA)
with AWS. The platform is aligned with the alliance-wide objectives of digital sovereignty,
real-time mission orchestration and secure coalition interoperability. Two operational
scenarios — Platform Health Monitoring (PHM) and the Contextual Image Verification
System (CIVS) — are introduced as concrete instantiations of the architectural design,
each representing distinct mission needs and data processing requirements. These use
cases serve as functional drivers for the capability mapping, service orchestration and
deployment modelling performed in later chapters.

Building upon this applied mission framing, the NAFv4 section introduces the
formal methodological approach that governs architectural modelling throughout the
thesis. Emphasising traceability, semantic rigour and interoperability, NAFv4 provides
the structural basis for decomposing strategic capability goals into technical deployment
artefacts. The thesis operationalises NAFv4 using the ArchiMate modelling language and
Archi tool, ensuring NATO-compliant artefact generation and alignment with coalition
governance frameworks such as Federated Mission Networking (FMN).

The second major section is dedicated to confidential computing and data sovereignty,
which are presented as foundational security primitives for modern military cloud
systems. This segment elaborates on hardware-based Trusted Execution Environments
(TEEs), remote attestation, cryptographic key provisioning and enclave integrity guaran-
tees. Through an in-depth analysis of AMD SEV-SNP, Nitro Enclaves and associated
key management flows, the thesis builds a security framework capable of withstanding
adversarial, jurisdictional and coalition-based trust threats. These mechanisms are tightly
mapped to regulatory mandates such as STANAG 4774/4778, AC/322-D(2021)0032-
REV1 and national cloud compliance requirements.

The final section introduces the operational computing architecture — comprising
cloud, fog and edge tiers — necessary for the deployment of attested services, sovereign
processing nodes and decentralised mission logic. It highlights how cloud-native infras-
tructures, when extended via fog and edge paradigms, can meet the latency, resilience
and autonomy demands of modern tactical environments. Virtualisation, containerisa-

5

BACKGROUND

tion and Infrastructure-as-Code (IaC) are discussed as enabling technologies for secure
workload orchestration, particularly in coalition and disconnected deployments.

Taken together, these pillars — formal architectural methodology (NAFv4), verifi-
able security mechanisms (confidential computing) and distributed deployment fabrics
(Cloud, Fog, Edge) — provide the theoretical and technical baseline upon which the
design and implementation in Chapters 3 and 4 are constructed. This background en-
sures that the proposed platform is not only technologically sound, but also strategically
aligned with emerging defence doctrine and alliance-wide interoperability standards.

2.1 OMNIAWARE

The OmniAware Connected Defence Platform is being designed as a sovereign, federated
and extensible architecture to address the complex demands of secure and interoperable
data management in modern military environments. This thesis contributes to its
conceptualisation and realisation as part of a broader initiative led by Capgemini under
the Strategic Collaboration Agreement (SCA) with Amazon Web Services (AWS).

Within the scope of this thesis, OmniAware serves as a vehicle for demonstrating
how NATO-aligned architecture models, confidential computing primitives and mission-
oriented deployment patterns can be operationalised in a secure and sovereign manner.
Rather than presenting a fully finalised system, the work focuses on modelling a com-
pliant and deployable architecture prototype grounded in real-world requirements and
defence-grade standards.

The platform targets dual-use scenarios within defence and homeland security and
is aligned with Capgemini’s strategic objectives under the AWS SCA. It is developed
iteratively across multiple architectural layers, leveraging real-time orchestration, con-
fidential analytics and policy-enforced data exchange across sovereign cloud, fog and
edge deployments.

At its core, OmniAware aligns with Capgemini’s strategic objectives under the SCA
with AWS and is supported as part of Capgemini’s Defense Europe initiatives. The
platform targets dual-use contexts within defence and homeland security and has been
modelled to support real-time mission orchestration, confidential analytics and zero-trust
communication patterns across fog, edge and sovereign cloud deployments.

The project timeline is structured around quarterly milestones, aligned with the
SCA fiscal calendar:

* Q1 (Jan-April) focused on foundational artefact development. These included
the architecture-centric Press Release and Frequently Asked Questions (PR/FAQ)
document [75], a comprehensive AWS aligned remediation plan derived from the
Well-Architected Framework (WAF) Review, a capability and feature breakdown,
a reference architecture structured around the AWS WAF and stakeholder-facing
planning artefacts. Together, they established the baseline for a compliant and
secure Minimum Viable Product (MVP).

¢ Q2 (May-July) marks the transition from documentation to implementation. The
objective is the realisation of the OmniAware MVP. This includes developing
deployable services, formalising technical artefacts for the AWS Foundational
Technical Review (FTR) and preparing materials for the Field Ready Kit (FRK) —
a strategic enablement package for AWS internal sales enablement and co-selling
support. The FRK includes a Sales Brief, Solution Brief and a co-branded consulting
offer.

2.1 OMNIAWARE

Two distinct scenarios were derived from the project’s mission framing and are

modelled using Business Process Model Notation (BPMN). These are:

Platform Health Monitoring (PHM), which enables real-time analytics and anomaly
detection on vehicle telemetry data using secure cloud-edge pipelines and attested
processing workloads [78].

Contextual Image Verification System (CIVS), a service that validates tactical
imagery against authoritative external references, supporting plausible inference
under degraded trust conditions in reconnaissance missions [76].

The PHM scenario provides real-time vehicle condition monitoring and predictive

maintenance capabilities within mission-critical contexts. Leveraging sophisticated ana-
lytics and artificial intelligence methodologies, this scenario realises advanced telemetry

proc

essing and anomaly detection. Specific capabilities include [79]:

Continuous collection and sophisticated analysis of vehicle sensor telemetry (en-
gine diagnostics, positional data via GPS, etc.).

Contextual enrichment using external data sources such as terrain profiles, traffic
intelligence and meteorological data.

Integration and structured classification of optional radio audio transmissions via
voice intelligence algorithms.

Real-time anomaly detection leveraging advanced statistical models and machine
learning.

Context-aware anomaly validation employing artificial intelligence to distinguish
critical from non-critical deviations.

Persistent and auditable storage of anomalies and event data for operational
assessment and forensic analysis.

Visual dashboarding solutions for immediate operational status visibility and
decision support.

Decision-making augmentation concerning vehicle readiness and operational
deployment.

Utilisation of Natural Language Processing (NLP) techniques to corroborate sensor-
detected anomalies via crew communication analysis.

The PHM scenario thus ensures operational reliability and enhanced decision-

making accuracy, effectively contributing to overall mission assurance and readiness.

The CIVS scenario addresses tactical and strategic requirements for validating and

classifying reconnaissance imagery within coalition and multinational environments.

This

use case implements sophisticated cross-domain validation techniques and ro-

bust classification according to NATO-defined security standards. The key capabilities
encompass [77]:

Real-time ingestion of imagery data streams enriched with precise metadata (GPS
coordinates, timestamps, camera orientation).

BACKGROUND

* Automated classification of imagery in accordance with established NATO security
categories (CAT-1 Unclassified, CAT-2 Restricted, CAT-3 Secret).

¢ Al-driven pattern recognition for extracting weather-related features directly from
imagery.

* Systematic cross-validation of observed visual data against authoritative external
weather data sources.

¢ Immediate automated alerting upon detection of discrepancies between visual and
official environmental data.

¢ Enforcement of rigorous role-based access control (RBAC) to maintain strict secu-
rity and confidentiality of sensitive imagery.

¢ Secure interfaces enabling authorised users to investigate anomalies in classified
imagery safely.

¢ Provision of validated environmental intelligence to support high-level strategic
and tactical decision-making processes.

Through its robust validation and security mechanisms, the CIVS contributes sig-

nificantly to mission integrity by ensuring reliable environmental context verification,
thereby enhancing operational decision-making confidence.
These scenarios have been methodically modelled using the Business Process Model
Notation (BPMN) and defined ontologies to achieve a rigorous semantic structure. Conse-
quently, they underpin the capability mapping used in subsequent architectural develop-
ment phases compliant with NAFv4. By adhering strictly to formalised viewpoint-driven
methodologies outlined by NATO [74], OmniAware aligns operational functionality with
technical infrastructure requirements. It leverages contemporary technology stacks in-
cluding Kubernetes for container orchestration, confidential computing frameworks
(notably AMD SEV-SNP) and zero-trust security models for data sovereignty and com-
pliance assurance.

This thesis contributes a validated architectural model demonstrating how sensitive,
multi-domain data flows can be securely and efficiently managed, thereby addressing
gaps identified in current literature and practice.

By employing rigorous architectural methodologies, OmniAware provides practi-
cal insights into the secure orchestration of mission-critical defence systems, thereby
significantly advancing the field of secure cloud computing in defence contexts. This
thesis positions itself as a contributing artefact within the broader architectural design
initiative under the AWS-Capgemini collaboration, focusing on NATO-aligned capability
modelling and secure, deployable system design.

2.2 NATO ARCHITECTURE FRAMEWORK VERSION 4

In order to build secure, modular and interoperable cloud-native infrastructures for mod-
ern military operations, a structured and formally governed architectural methodology is
indispensable. Within this thesis, the NATO Architecture Framework Version 4 (NAFv4)
is adopted not merely as a referential document, but as the foundational modelling
framework to structure, trace and govern the system architecture. It offers the method-
ological rigour required for aligning mission planning with technical implementation
across federated, multi-domain and sovereign defence platforms.

8

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight
TODO: What MDO?

2.2 NATO ARCHITECTURE FRAMEWORK VERSION 4

NAFv4 represents the latest iteration of NATO'’s enterprise architecture framework
and introduces a paradigm shift from document-centric architecture towards formal,
model-driven engineering. It builds upon the legacy of frameworks such as DoDAF
and MODAF, but extends them by fully integrating formal meta-modelling languages
such as the Unified Architecture Framework Domain Meta-Model (UAF-DMM) and
ArchiMate. This model-centric philosophy enables semantic consistency, traceability and
governance across all phases of the architectural lifecycle [53], [74].

At the core of NAFv4 is its viewpoint-based modelling structure. Viewpoints
represent categorised stakeholder perspectives that guide the development of system
views, each focused on specific architectural concerns. The five primary viewpoint
classes are: Concept (NCV), Logical Specification (NLV), Service Specification (NSV),
Physical Resource (NPV) and Architecture Foundation (NAV). These layers enable the
decomposition of complex systems from strategic intent to deployable infrastructure,
ensuring that high-level capability goals are methodically refined into technical designs
and validated deployments.

The Concept Viewpoint defines operational goals, high-level capability groupings
and mission scenarios. It provides the entry point for capability-driven planning and
stakeholder alignment. The Logical Specification Viewpoint then describes functional
interactions, logical processes and information flows independent of implementation
technologies. The Service Specification Viewpoint shifts the focus towards modular and
reusable services, interface definitions and orchestrations. Next, the Physical Resource
Viewpoint grounds the architecture in concrete infrastructure components such as com-
pute nodes, networks and deployment topologies. Finally, the Architecture Foundation
Viewpoint provides meta-information, traceability artefacts, compliance annotations and
mappings to external standards such as Unified Architecture Framework (UAF) and
The Open Group Architecture Framework (TOGAF) [53].

NAFv4’s viewpoint logic is systematised in its official Viewpoint-Model Matrix.
This artefact structures the required model types across architectural layers and semantic
intents, guiding modellers in developing traceable, semantically valid artefacts. Fig-
ure 2.1 illustrates the full matrix, which has been applied throughout this thesis as a
methodological blueprint for architectural design.

To implement these models formally, this thesis employs the ArchiMate modelling
language (version 3.2), which aligns directly with NAFv4’s layered viewpoint struc-
ture [52]. ArchiMate supports the representation of business, application and technology
layers and is enriched by constructs for strategy, motivation and physical deployment.
It offers the expressiveness and traceability required to represent NATO-compliant
architectures from capability maps to containerised deployments.

The modelling process is supported by the open-source tool Archi (version 5.5.0),
which provides native support for ArchiMate 3.2, viewpoint-based organisation, layered
visualisation and semantic validation. Compared to other modelling tools such as Sparx
Enterprise Architect, Archi was selected due to its open and extensible modelling format,
native ArchiMate 3.2 support, active community development and seamless integra-
tion with version control systems. These factors made it particularly well-suited for a
proof-of-concept architecture that required transparency, portability and reproducibility
across iterative modelling cycles. Archi allows modellers to construct artefacts aligned
with NAFv4 logic, maintain traceability across viewpoints and document architectural
assumptions in a collaborative, version-controlled environment.

To ensure methodological consistency, the ArchiMate Modelling Guide for NAFv4 [74]
was adopted. This guide, published by NATO’s Architecture Capability Team, defines
mappings between NAFv4 artefacts and ArchiMate element types. It provides detailed

9

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

Valentin Pfeil
Highlight

BACKGROUND

Taxonomy Structure Connectivity | Processes States Sequences | Information | Constraints | Roadmap

Architecture i Acite dology ; rchite
i Correspondence Status Versions | Compliance Roadmap

NAV-2 NAV-1 18042010 NAF Ch2 NAV-1 NAV-1 NAV-3a

Figure 2.1: NATO Viewpoint-Model Matrix — Structuring Architectural
Semantics [74]

specifications for modelling capabilities, interfaces, nodes and resources and defines
visual conventions for mandatory versus optional elements.

NAFv4 Name NAFv4 ArchiMate Name ArchiMate Name

The name provided in the The name of the specialized The name of the ‘parent’

NAFv4 framework ArchiMate element created for | element from the ArchiMate

documentation. the purpose described in this specification from which the
document. NAFv4 specialization is derived

Figure 2.2: Mapping Schema NAFv4-Archimate - Example [74]

Figure 2.2 shows a mapping example, in which ArchiMate elements such as
Application Component,Service Interface or Technology Node are aligned with stan-
dardised viewpoint artefacts such as NSV-4 or NPV-6. This mapping logic was imple-
mented directly within Archi using dedicated folders and structured views per viewpoint
class, allowing NATO-compliant decomposition of the OmniAware platform architecture.

To reinforce the traceability between strategic intent and operational execution,
Figure 2.3 provides an example of a C4 Viewpoint, in which a capability defined in the
NCV is semantically linked to operational activities defined in the NLV, closing the
feedback loop between planning and execution.

By integrating NAFv4, ArchiMate and Archi in a tightly coupled methodology,
this thesis achieves not only compliance with NATO modelling expectations, but also a
practical workflow for building federated, sovereign and adaptable architectures. Each
artefact — whether a capability map, logical service flow or deployment node — is
part of a validated and reproducible model structure that supports auditability, lifecycle
governance and architectural reuse.

In summary, NAFv4 is not merely referenced, but fully operationalised within this
research. Its layered viewpoint system, formal artefact taxonomy and integration with

10

2.2 NATO ARCHITECTURE FRAMEWORK VERSION 4

:@ Legend :EE
Capability 6/6 Row/Layer # Capability
) Concepts)
A Logical A
ﬂ : ' ~ ﬂ] =9
Operational # Operational
Activity Activity
/ /
N
#Standard = # Standard =)
Operational Operational
Activity Activity

Figure 2.3: C4 Viewpoint, Mapping of NAFv4 Capability to Operational Activity -
Example [74]

modelling standards like ArchiMate form the backbone of the OmniAware platform’s
architectural design. This ensures that the resulting system is not only technically
feasible, but also methodologically grounded, traceable and aligned with alliance-level
architectural doctrine.

From a historical perspective, the NATO Architecture Framework originated as
a derivative of the U.S. Department of Defense Architecture Framework (DoDAF)
and the UK’s Ministry of Defence Architecture Framework (MODAF), both of which
emphasised structured capability-based planning and enterprise-level interoperability.
Earlier versions of NAF, particularly v3, were predominantly document-driven and
lacked the semantic precision required for modern, automated and federated system
design. As digital operations and coalition-based military engagements grew more
complex, the need for an integrated, machine-processable architecture standard became
evident [53].

NAFv4 addresses these needs by introducing a formal model-driven engineering
paradigm, underpinned by the integration of the Unified Architecture Framework
Domain Meta-Model (UAF-DMM) and the ArchiMate specification. The most prominent
structural enhancement is the two-dimensional classification of architectural artefacts
using “Subjects of Concern” (e.g. Capability, Service, Resource) and “Aspects of Concern”
(e.g. Behaviour, Structure, Information, Roadmaps). Each artefact — such as NSV-4 or
NPV-6 — is mapped along both dimensions to clarify its scope, intent and relationship
within the broader system model.

This methodological matrix enables rigorous model design that supports semantic
traceability between different abstraction levels. For example, a capability model (NCV-2)
is explicitly linked to logical activities (NLV-4), service compositions (NSV-5) and physical
node deployments (NPV-6), thereby ensuring continuity from strategic intent to imple-
mentation. These relationships are critical in defence architectures, where architectural
auditability, reproducibility and compliance with alliance-wide governance mandates
are required.

In multinational contexts — such as Federated Mission Networking (FMN), Joint
All-Domain Command and Control (JADC2) or other coalition operations — NAFv4
provides a common semantic foundation for interoperable system architectures. It
allows NATO member states and partners to model, align and integrate their national

11

BACKGROUND

systems while maintaining sovereignty and ensuring mission-specific configurations.
This is especially relevant in cross-domain systems (cyber, space, etc.), where modularity,
information assurance and policy enforcement must span organisational boundaries [82].

The use of formal viewpoint decomposition further enhances the transparency
of architectural decisions. Viewpoints such as NCV (strategic), NLV (functional), NSV
(service) and NPV (physical) are not isolated models, but semantically interlinked
representations that support iterative refinement and validation. In this thesis, this
layering has been used to derive consistent, NATO-aligned architectural structures for
the OmniAware platform, enabling traceability from stakeholder objectives to technical
design choices.

While other frameworks such as TOGAF or UAF also support structured architec-
tural modelling, their emphasis and target audiences differ. TOGAF is predominantly
focused on enterprise IT governance in civilian domains, with extensive flexibility but
limited defence-specific structuring. UAF is more comprehensive, but lacks the NATO-
specific artefact taxonomy and procedural guidance required for cross-nation military
interoperability. NAFv4, in contrast, is specifically tailored to the needs of NATO-aligned
defence organisations and explicitly addresses compliance, multi-layer traceability and
coalition interoperability [51], [53].

By integrating the ArchiMate language and the open-source Archi modelling tool
in line with the official NATO Modelling Guide, this thesis ensures that architectural
artefacts not only follow a methodologically correct structure, but also meet tooling and
exportability requirements for collaborative defence development. The modelling process
was executed in Archi 5.5.0 using ArchiMate 3.2 profiles and applied folder structures per
viewpoint category, following guidance in the NATO ArchiMate Modelling Guide [74].

The adoption of NAFv4 throughout this thesis establishes it as a scientific backbone
for the architectural methodology employed. Rather than improvising design steps,
all modelling decisions — from capability mapping to Kubernetes-based deployment
strategies — are grounded in formal NATO-compatible artefact structures. This ensures
that the architecture is not only technically coherent and reproducible, but also aligns
with strategic priorities of coalition-based system development, sovereignty requirements
and NATO digital transformation goals.

2.3 CONFIDENTIAL COMPUTING AND DATA SOVEREIGNTY

In an era of pervasive digitalisation, the secure handling of sensitive data has become
both a technological and strategic imperative — particularly for public sector, critical
infrastructure and defence domains. As adversaries exploit the expanding attack sur-
face of distributed systems, conventional perimeter-based and software-centric security
paradigms fall short in protecting data through its entire lifecycle.

Confidential computing and data sovereignty are two converging concepts that
address this fundamental challenge by redefining the security model for cloud-native,
coalition-based and geopolitically sensitive infrastructures.

2.3.1 Confidential Computing

Confidential computing refers to the use of hardware-based technologies to isolate
and protect data while it is being processed. It relies on TEEs that reside within the
CPU, providing runtime encryption, logical isolation and remote attestation. These

12

2.3 CONFIDENTIAL COMPUTING AND DATA SOVEREIGNTY

mechanisms ensure that the code and data within an enclave remain protected—even
from privileged components such as the operating system (OS), hypervisor or virtual
machine monitor (VMM). Unlike traditional security measures that focus on data at rest
or in transit, confidential computing fills the remaining gap: data in use [35], [42].

TEEs offer a set of capabilities that extend trust into untrusted execution environ-
ments:

* Memory encryption ensures that enclave-resident data is encrypted in random-
access memory (RAM), preventing exposure through memory scraping or direct
memory access (DMA) attacks.

¢ Code integrity guarantees that only cryptographically measured code is allowed
to execute in the enclave.

* Remote attestation enables external verifiers to cryptographically validate the en-
clave’s origin, codebase and configuration, forming the foundation of decentralised
trust.

Leading implementations include Intel Software Guard Extensions (Intel SGX),
Advanced Micro Devices, Inc. (AMD) Secure Encypted Virtualisation — Secure Nested
Paging (AMD SEV-SNP), Intel Trust Domain Extensions (Intel TDX) and AWS Nitro
Enclaves, each supporting different trust models and levels of programmability. While
Intel Software Guard Extensions (Intel SGX) enables application-level enclaving with
minimal Trusted Computing Base (TCB), SEV-SNP allows the isolation of entire VMs,
facilitating lift-and-shift migrations of legacy defence systems into confidential environ-
ments. Nitro Enclaves provide a balance of compatibility and attestation support within
cloud-native ecosystems [42].

Confidential computing underpins secure computing in coalition and adversarial
contexts. In defence, enclaves enable secure Al inference on classified models, confi-
dential digital twin simulations, secure federated learning across nations and attested
Command and Control (C2) systems deployed across tactical edge nodes. These use
cases are grounded in NATO's vision for FMN, which demands resilient, interoperable
and cryptographically verifiable computing domains in multi-national operations. C2
refers to the exercise of authority and direction by a properly designated comman-
der over assigned forces in the accomplishment of a mission. It includes the systems,
processes and communication structures required for planning, decision-making and
mission execution across all operational domains.

Crucially, the use of enclaves in such systems supports a shift from perimeter trust
to cryptographic trust. This is particularly relevant for federated infrastructures where
workloads cross national and organisational boundaries. Enclaves create sovereign
execution environments: verifiable compute zones that enforce national data protection
policies independently of infrastructure ownership [50].

2.3.2 Data Sovereignty

Data sovereignty, in turn, extends the principle of territorial sovereignty to digital
information. It is the ability to define and enforce access, processing and storage policies
over data throughout its lifecycle and regardless of its physical location. From a regula-
tory standpoint, it intersects with jurisdictional frameworks such as the GDPR, cloud
assurance schemes such as the European Cybersecurity Certification Scheme (EUCS)
and industrial sovereignty initiatives such as Gaia-X [50], [66].

13

BACKGROUND

Technical enforcement of data sovereignty is increasingly difficult in multi-cloud or
coalition-operated environments where data can traverse multiple jurisdictions. Confi-
dential computing resolves this by providing verifiable guarantees that data remains
under cryptographic control — even during processing — regardless of where it phys-
ically resides or who manages the infrastructure. This is essential for the European
defence sector, where NATO operations often rely on global communications and infor-
mation systems platforms hosted across multiple jurisdictions [10], [43].

A sovereign cloud system leveraging TEEs can ensure that mission data is encrypted
throughout its lifecycle, with remote attestation used to verify that only authorised
enclaves with audited workloads may access or process it. This transforms traditional
notions of cloud trust, replacing contractual and legal constructs with measurable,
enforceable hardware-rooted guarantees [42], [66].

These capabilities are already reflected in evolving NATO policy. AC322-D(2021)0032-
REV1 outlines requirements for cloud-based handling of NATO-classified data. It stipu-
lates that data must be processed in environments that provide strong isolation, support
auditability and enable secure lifecycle management. Similarly, STANAG 4774 and
4778 establish standards for confidentiality metadata and digital bindings to ensure
data remains linked to its classification and authorisation policies [5], [8]. TEEs and
confidential computing fulfil these requirements both technically and operationally [43].

Moreover, emerging cloud-native confidential orchestration platforms such as Con-
stellation or confidential containers enable enclave-based policies to be enforced at scale
in Kubernetes clusters. Combined with policy engines, Public Key Infrastructure (PKI)
anchors and decentralised key distribution, they facilitate attested service meshes where
every microservice can be verified at runtime. This enables not only secure Continuous
Integration and Continuous Delivery (CI/CD) pipelines, but also real-time mission
workloads such as sensor fusion, video stream analytics or battlefield telemetry to be
executed within fully sovereign boundaries [42].

Beyond tactical scenarios, confidential computing supports strategic autonomy in
digital capability development. By ensuring that software artefacts, mission algorithms
and data models remain protected — even when trained, compiled or evaluated on
foreign infrastructure — nation-states can develop next-generation digital capabilities
without sacrificing confidentiality or control. This is particularly relevant for AI model
training, cyberdefence algorithms and predictive logistics systems.

In the long-term, confidential computing and data sovereignty are not just enablers
of secure infrastructure — they are the cornerstones of digital deterrence. They enable
trust to be built on measurable properties, not institutional assumptions. For future mili-
tary clouds, they ensure that sovereignty is preserved even in compromised, contested
or coalition-controlled environments. For NATO and the EU, they offer a technological
path toward resilient, federated and sovereign digital power projection.

The convergence of confidential computing and data sovereignty redefines digital
trust at the root of computing. Together, they enable a transformation from infrastructure-
centric to policy-centric security. They allow defence organisations to process sensitive
data securely on any infrastructure, build verifiable coalitions and maintain strategic
control in a contested, multipolar cyber domain. As such, they are indispensable to any
future-ready military cloud architecture and constitute key pillars of the OmniAware
platform.

Several initiatives at the national and alliance level are already exploring or op-
erationalising the capabilities described above. One example is the AWS European
Sovereign Cloud (ESC), which introduces physically and logically separated cloud re-
gions to support public sector workloads within the EU. These regions are independently

14

2.3 CONFIDENTIAL COMPUTING AND DATA SOVEREIGNTY

operated and staffed, ensuring that all data processing, support and operations remain
under EU jurisdiction. Importantly, AWS Nitro Enclaves extend this offering by enabling
confidential computing at the virtual machine boundary, allowing sensitive workloads
to be executed in memory-encrypted, attested compute environments [65].

At the NATO level, the Federated Mission Networking (FMN) initiative serves as
the alliance’s reference architecture for interoperable command and control systems.
FMN Spiral Specifications have increasingly included provisions for data tagging, cross-
domain guard integration and secure multi-party information sharing. Confidential
computing provides the technical foundation to operationalise such requirements by
enabling verifiable enclave-based processing nodes that can operate even in untrusted
coalition infrastructure [53].

In the German context, the Bundeswehr’s cloud transformation strategy, as reflected
in the BWI's multi-cloud roadmap, explicitly highlights the need for workload isolation,
policy-enforceable encryption and cross-domain data sharing controls. Confidential
computing directly supports these objectives. For example, deploying SEV-backed
virtual machines in tactical private cloud infrastructure allows mobile units to execute
mission logic securely, even in environments where physical security of the compute
node cannot be guaranteed. Key command applications — such as secure digital maps,
predictive logistics tools and encrypted mission reports — can all be hosted within
attested enclaves, ensuring compliance with the Bundeswehr’s own ZDV policies and
NATO interoperability requirements.

The trust model of confidential computing depends heavily on the attestation
infrastructure and key release protocols. A typical remote attestation flow involves the
following steps:

1. The application requests an enclave instance (e.g. via Nitro Enclave, SGX or SEV-
enabled hypervisor).

2. Upon launch, the enclave generates a measurement, which is a cryptographic hash
of its code and configuration.

3. This measurement is signed by a hardware root of trust (e.g. Intel EPID or AMD’s
Platform Security Processor) and issued to a verifier, typically a key management
service (KMS) or policy enforcement point.

4. The verifier evaluates the measurement against an allowlist (e.g. pre-approved
mission applications) and policy metadata.

5. If the evaluation succeeds, the verifier instructs a KMS to release workload-specific
decryption keys (e.g. for credentials, mission data or AI models) into the enclave’s
memory space.

This process ensures that only verified and authorised workloads receive the cryp-
tographic materials necessary for their execution. The keys never leave the enclave
or become accessible to the host system. This is particularly valuable in military de-
ployment scenarios, where the compute infrastructure may be operated by third-party
logistics providers, coalition nations or even located in adversarial zones [56].

Key release protocols can be further extended with policy constraints. For example,
certain keys may only be released if the attestation originates from a platform within a
specific NATO country, is geofenced to a particular base or is valid within a predefined
mission time window. These policies can be enforced by integrating the attestation

15

BACKGROUND

infrastructure with identity and policy engines such as Secure Production Identity
Framework For Everyone (SPIFFE)/SPIFFE Runtime Environment (SPIRE), HashiCorp
Vault or confidential KMS instances [61].

A prominent example of confidential computing is AMD’s Secure Encrypted Virtual-
isation Secure Nested Paging (SEV-SNP), a hardware-enforced TEE specifically designed
to securely isolate entire VMs from potentially compromised hypervisors and cloud
providers. SEV-SNP ensures that data and workloads remain confidential and integral
by encrypting VM memory with individual AES-128 encryption keys that are generated
and managed directly by the integrated AMD-SP [56].

The core root of trust for AMD SEV-SNP lies within this Secure Processor, a dedi-
cated hardware security co-processor embedded in the AMD CPU. The Secure Processor
(SP) handles critical operations including key generation, cryptographic measurement
of VM components and the issuance of attestation reports. At the hardware level, each
AMD CPU integrates a unique Chip Endorsement Key (CEK), permanently stored in
chip fuses and never exposed externally. Derived from the CEK, the Versioned Chip
Endorsement Key (VCEK) is used specifically to sign attestation reports, verifying both
the integrity and authenticity of the VM environment, including the firmware, boot
loader and operating system kernel components [61].

To maintain memory integrity, SEV-SNP implements the Reverse Map Table (RMP),
a hardware-managed structure preventing unauthorised write operations to the memory
regions of secured VMs. Additionally, SEV-SNP introduces Virtual Machine Privilege
Levels (VMPLs), enabling fine-grained privilege separation within VMs. This mechanism
is particularly beneficial for sensitive operations such as virtual TPM implementations.

The attestation mechanism in SEV-SNP is integral to its security model, allowing
external entities to validate the trustworthiness of a VM environment. Initially, a Launch
Measurement, consisting of cryptographic hashes of firmware, kernel images and kernel
parameters, is generated during VM startup. This measurement is securely stored and
verified against reference values each time the VM boots. During the attestation process,
a VM requests an attestation report from the SP, which is then cryptographically signed
using the VCEK. External parties validate this signed report against AMD’s public
certificate chain, thus ensuring the authenticity and integrity of the VM’s execution
environment [61].

Key distribution in SEV-SNP is securely facilitated through two primary workflows:
dm-verity for integrity-only scenarios and dm-crypt for both integrity and confidentiality.
In the integrity and confidentiality scenario, a Diffie-Hellman (DH) key exchange is
integrated into the attestation process. Here, the VM generates an ephemeral DH key pair
and includes the public key in the attestation report. Upon validation, the external key
management service (KMS) securely transmits an encrypted disk encryption key, which
the VM decrypts using the shared DH secret. Consequently, this method ensures secure
key provisioning by exclusively granting access to attested VMs, thereby preventing
unauthorised disclosure of sensitive cryptographic material [61].

Figure 2.4 effectively and visually illustrates the attestation and key management
workflow to describe the cryptographic key provisioning process, highlighting interac-
tions between the VM, AMD SP and external verifying entities.

Initially, the VM generates an ephemeral Diffie-Hellman (DH) key pair, embedding
its public key into an attestation report requested from the AMD-SP. The SP measures
critical boot components securely via the Open Virtual Machine Firmware (OVMEF),
which is a UEFI firmware implementation designed for virtual machines, capable of se-
curely storing and verifying cryptographic hashes (Kernel, Initramfs, Kernel parameters)
and cryptographically signs these measurements using the Versioned Chip Endorsement

16

2.3 CONFIDENTIAL COMPUTING AND DATA SOVEREIGNTY

» Encrypted Disk

+
Key exchange

Initramfs
Q) a

>
> Kernel %

OVMF

Injected Hashes

Unlock

Check

Kernel
Kernel Cmdline
Initramfs

Figure 2.4: AMD SEV-SNP - Attestation and Key Management Workflow [61]

Key (VCEK). An external entity, typically the VM owner or a Key Management Service
(KMS), verifies the attestation report using AMD’s public key infrastructure. Upon
successful validation, the KMS securely transmits the encrypted disk key, encrypted
using the shared DH secret derived from the VM’s public key, to the attested VM. The
VM then uses the derived shared secret to decrypt the disk encryption key and unlock
the encrypted disk, ensuring secure and authenticated boot processes [61].

Figure 2.5 provides a comprehensive visual explanation of memory protection
mechanisms used in SEV-SNP.

[e 5

1) Fetch Attestation Report
2) Generate DH Key Pair
IAttestation Report {...

GuestData= Il Server PDHK]
..}

3
Lt

1) Verify Report
2) Generate DH Key Pair
3) Derive Shared Secret
4) Wrap Disk Encryption Key
with Shared Secret
Client PDHK I
_ Wrapped Disk Encryption Key

1) Derive Shared Secret
2) Unwrap Disk Key
]

Figure 2.5: AMD SEV-SNP - Memory Protection and Key Provisioning
Mechanisms [61]

Initially, the VM initiates a remote attestation request by generating a nonce which
is a unique, randomly generated number used only once to prevent replay attacks, into
an attestation report requested from the AMD-SP and an ephemeral Diffie-Hellman
key pair, embedding the public component Platform Diffie-Hellman Key (PDHK)
into the attestation report provided by the AMD-SP. The PDHK is an ephemeral,

17

BACKGROUND

platform-generated public key utilised in the DH key exchange protocol during the
remote attestation process of AMD SEV-SNP environments. The VM Owner verifies the
authenticity and integrity of the attestation report, subsequently generating their own
ephemeral DH key pair to derive a shared secret. This secret is used by the VM Owner
to securely encrypt (wrap) the disk encryption key. The VM receives this encrypted
key, independently derives the shared secret from its PDHK, unwraps the encryption
key and securely mounts the encrypted storage. This mechanism guarantees that disk
encryption keys are securely provisioned exclusively to validated and trustworthy VM
instances [61].

Having explored the foundational role of TEEs — particularly AMD SEV-SNP
— in enabling remote attestation and enforcing cryptographic trust boundaries, it is
now essential to broaden the focus toward Edge Computing. This shift is crucial,
given that many mission-critical defence scenarios rely on geographically distributed,
intermittently connected and physically exposed compute nodes. In this context, TEEs
are not only a matter of secure computation but become enablers for trust in hostile or
coalition-controlled edge environments. Before diving deeper, we refer to Figure 2.6,
which compares TEE implementations — Intel SGX, AMD SEV and ARM TrustZone —
based on capabilities, isolation levels and architectural characteristics relevant also for
edge deployments [42].

‘ ‘ Intel SGX AMD SEV | ARM TrustZone |
Processor Architecture x86-64 x86-64 ARM
Secure Storage Yes No No
Remote Attestation Yes Yes No
Memory Isolation Yes Yes Yes
Memory Size Limit Up to 128 MB EPC Up to available RAM 3-5MB
Trusted I/O No Yes Yes
Operation Level Ring 3 Ring 0 Ring -2
Compatibility Windows Linux-based VMs and hypervisors | Android, Linux
SDK Provided Not required Provided
Memory Integrity Protection Yes No No
Multithreading Yes Yes No
Applications Simple and security-sensitive Complex and legacy Lightweight

Figure 2.6: Comparison of TEE architectures [42]

It is important to note that especially the depiction of AMD SEV in the original
figure is outdated, as it does not reflect the enhancements introduced with SEV-SNP,
such as support for nested paging, the Reverse Map Table (RMP) and fine-grained
privilege separation via virtual machine privilege levels VMPLs. These improvements
significantly elevate its applicability in zero-trust edge scenarios.

18

2.3 CONFIDENTIAL COMPUTING AND DATA SOVEREIGNTY

For edge environments orchestrated via Kubernetes, such as in the deployment of
microservice-based tactical applications, the most viable TEE choices are Intel SGX, Intel
TDX and AMD SEV-SNP. ARM TrustZone, while ubiquitous in mobile contexts, lacks
the granular attestation and isolation properties required for container-based workloads.
Intel SGX supports application-level enclaving with a minimal TCB, making it suitable
for lightweight and high-assurance workloads. However, its limited enclave memory
and need for code refactoring constrain its usability [42].

In contrast, AMD SEV-SNP enables lift-and-shift of legacy services through VM-
level isolation, aligning better with the operational realities of cloud-native edge clusters.
This architectural fit is further underscored by recent advancements such as Trusting
the Cloud-Native Edge [60], which proposes a secure enrolment architecture for edge
worker nodes based on TPM attestation and RBAC-driven policy enforcement. However,
a decisive limitation arises when shifting the focus from fog to true edge deployments:
current market availability still lacks support for SEV-SNP-enabled edge hardware. While
theoretically suitable, SEV-SNP remains confined to server-grade platforms, given the
physical constraints, thermal design power and form factor requirements that edge-class
devices cannot yet accommodate. Similarly, Intel TDX is bound to 4th Gen Xeon Sapphire
Rapids processors, which are likewise ill-suited for decentralised, energy-efficient edge
environments [42].

Consequently, attention is shifting toward alternative architectures that prioritise
energy efficiency, embedded compatibility and extensibility. One notable example is the
NVIDIA Jetson product family, which integrates a native TEE via OP-TEE. While OP-TEE
does not natively support remote attestation, extensions and third-party frameworks exist
to augment this capability. However, the security guarantees of such extensions remain a
subject of ongoing research. Their reliability, verifiability and suitability under adversarial
or disconnected conditions must be evaluated with particular care — especially in
light of the stringent regulatory and mission-critical demands of defence-grade edge
infrastructure, including secure key release, disconnected attestation workflows and
compliance with cross-domain policies.

Determining the appropriate implementation layer for enclave support in defence-
oriented edge deployments is a critical architectural decision. This choice depends
on the required isolation granularity, the portability of workloads and the anticipated
level of adversarial access. In practical terms, SEV-SNP offers a compelling compromise
by enabling compatibility with containerised workloads while upholding a strong
hardware-rooted trust anchor.

In multi-domain operations (MDO), data flows across services, domains and or-
ganisational boundaries — raising the challenge of establishing federated trust without
compromising sovereignty. Confidential computing enables a distributed trust model in
which participating nodes independently prove their security posture and eligibility to
access certain classes of mission data. In this sense, attestation becomes a programmable
form of operational authorisation, bridging the gap between cryptography and com-
mand policy.

For instance, a sensor platform from Nation A may provide video feeds into a
joint coalition Al model hosted in a cloud enclave operated by Nation B. The enclave is
attested and only if its measurement matches, a trusted configuration does Nation A
allow its encrypted data stream to be decrypted and processed. Conversely, any attempt
to process the data outside of this enclave configuration would result in key withholding
— preventing data leakage or policy violations.

These mechanisms are also compatible with tactical edge deployments. Modern
edge devices increasingly support embedded TEEs, allowing secure execution of in-

19

BACKGROUND

ference engines, mission analytics and encryption modules directly on unmanned
platforms, forward-operating bases or mobile units. Paired with confidential boot and
runtime attestation, such systems offer unprecedented levels of verifiability and policy
control, even in disconnected or contested environments.

Confidential computing and data sovereignty are not just enablers of secure systems
as they have significant operational implications and strategic relevance. They represent
a strategic inflection point in how military and government organisations architect their
digital platforms. They allow decision-makers to:

e Shift trust from infrastructure to verifiable computation.

¢ Operationalise security policy through cryptographically enforced runtime con-
straints.

* Distribute computing workloads across heterogeneous and coalition-owned infras-
tructure without losing sovereignty.

* Enable multinational collaboration without requiring full data sharing.

* Satisfy compliance with national and international regulations through measurable,
auditable technical means.

Confidential computing and data sovereignty enable defence organisations to es-
tablish cryptographic perimeter controls that are resilient to jurisdictional ambiguity;,
provider-side compromise or insider threat. This transformation of the military cloud
stack is not merely evolutionary — it is foundational to preserving decision superiority
and secure coalition interoperability in the coming decades.

The subsequent chapter transitions from architectural modelling to implementation
design, detailing the runtime and operational environment required to realise the
previously defined services. It outlines how the abstract platform architecture is mapped
to concrete cloud, edge and hybrid deployment topologies, enabling mission-compliant
execution under real-world constraints.

2.4 CLOUD, FOG AND EDGE COMPUTING IN DEFENCE

The increasing digitisation and decentralisation of military infrastructures across all op-
erational domains — land, air, sea, cyber and space — have made the role of distributed
computing paradigms more critical than ever. As defence forces confront heterogeneous
threat environments, intermittent connectivity and constrained physical infrastructure,
the traditional reliance on centralised information systems is being replaced by hybrid
and multi-layered approaches to data processing. These challenges necessitate architec-
tural paradigms that can provide not only computational elasticity and resilience but
also strong guarantees of mission assurance and information superiority across strategic,
operational and tactical levels.

In this context, cloud computing has emerged as a dominant model for the orchestra-
tion of scalable, on-demand and geographically abstracted computing resources. Cloud
platforms enable the efficient pooling of compute and storage capacity, as well as cen-
tralised orchestration and policy control. In defence scenarios, this allows for real-time
operational planning, collaborative intelligence fusion and the delivery of command-and-
control (C2) services across widely dispersed forces. Nonetheless, such infrastructures
typically reside in remote hyperscale data centres, introducing operational fragilities —

20

2.4 CLOUD, FOG AND EDGE COMPUTING IN DEFENCE

especially in latency-sensitive, bandwidth-constrained or disconnected environments.
These constraints become particularly relevant in scenarios involving mobile units,
contested electromagnetic spectrums or adversarial conditions, where uninterrupted
cloud uplinks cannot be assumed.

To mitigate these challenges, fog computing introduces a distributed intermediary
layer that extends cloud-native services towards the periphery of the network. It acts
as a processing continuum between the core and the edge, offering regional compute
capacity with reduced round-trip delays. Fog nodes can be deployed on forward-
operating bases, mobile platforms or maritime vessels, enabling low-latency execution
of mission workflows, pre-processing of sensor data or even tactical orchestration of
autonomous platforms. This architectural layer is especially useful in enabling near-real-
time services that require situational responsiveness without full reliance on backhaul
connections to centralised clouds.

Edge computing, in turn, represents the most decentralised paradigm, situating
computational resources directly on sensors, platforms and actors operating at the tacti-
cal frontier. Unlike fog computing, which preserves a regional scope, edge computing
executes data processing in close physical proximity to the data source — often within
the same embedded system. This proximity drastically reduces latency, enhances re-
sponsiveness and ensures that critical analytics such as threat detection, local autonomy
and dynamic reconfiguration — can be performed even in fully disconnected or denied
environments. In modern defence architectures, edge computing enables Al-enabled bat-
tlefield analytics, encrypted local data fusion and the secure execution of containerised
microservices within ruggedised devices and mobile platforms.

Each of these computing paradigms offers unique benefits, but only through their
integration can the full spectrum of operational requirements be addressed. Defence-
grade architectures increasingly follow a hierarchical model in which cloud, fog and edge
form a distributed processing fabric. This fabric ensures that workloads are assigned to
the optimal layer based on data sensitivity, mission urgency, computational intensity
and network availability. The resulting architecture allows for asymmetric decision
superiority, enabling military actors to act faster, with greater resilience and better-
informed situational awareness than their adversaries.

Furthermore, these paradigms form the technological substrate upon which con-
fidential computing, sovereign execution and coalition interoperability must be built.
Secure workload migration, attested microservices and policy-based compute routing
all depend on the existence of a distributed runtime layer capable of hosting such work-
loads across cloud, fog and edge tiers. Consequently, a thorough understanding of the
design principles, technical constraints and operational implications of these paradigms
is imperative for any future-ready military information system. This section elaborates
on the architectural interplay between these domains and outlines the role each plays in
enabling secure, scalable and interoperable defence platforms.

2.4.1 Virtualisation

At the technological core of cloud computing lie virtualisation and abstraction mecha-
nisms that decouple software workloads from underlying physical infrastructure. Virtual
machines (VMs) orchestrated by hypervisors such as Kernel-based Virtual Machine
(KVM), Xen or VMware ESXi, enable the secure co-location of multiple operating sys-
tems on a single physical host. This isolation not only increases resource efficiency but
also lays the foundation for scalable, secure multitenancy — a critical requirement for

21

BACKGROUND

defence-grade cloud infrastructure. Beyond virtual machines, container-based technolo-
gies such as Docker and orchestration systems like Kubernetes have further advanced
cloud-native paradigms. Containers encapsulate application logic and dependencies into
isolated runtime environments that can be deployed across heterogeneous platforms,
thereby facilitating the modularisation of defence applications and microservice-based
architectures [56], [57].

Virtualisation represents a pivotal technology for the abstraction and efficient util-
isation of physical computing resources. By leveraging hypervisors, physical servers
can be partitioned into multiple isolated VMs, each operating with individual configu-
rations of CPU, RAM, storage and network resources. Two principal hypervisor types
exist: Type-1 hypervisors are installed directly on the hardware (bare-metal), offering
higher performance and better suitability for data centre operations, whereas Type-2
hypervisors run atop a host OS, typically for desktop or development environments [56].

To provision, configure and manage these resources reliably and at scale, cloud
computing relies heavily on Infrastructure-as-Code (IaC) techniques. Declarative lan-
guages such as Terraform, AWS CloudFormation or Ansible enable version-controlled,
repeatable and policy-driven deployments of infrastructure components, significantly
reducing operational complexity and deployment risks. In defence environments, where
consistency, auditability and automation are paramount, IaC becomes indispensable.
Combined with DevSecOps pipelines and automated compliance checks, this founda-
tional technology enables military cloud systems to remain resilient, auditable and agile
under dynamic operational conditions [56], [57].

2.4.2 Cloud Computing

Cloud computing delivers computing services — including servers, storage, databases,
networking, software and analytics — over the internet, offering faster innovation,
flexible resources and economies of scale. Users typically pay only for the cloud services
they use, helping to lower operating costs and run infrastructure more efficiently [2].

In the defence sector, cloud computing enables the centralisation of data and
applications, providing authorised personnel with access to critical information from
any location. This centralisation supports collaborative operations across different
branches and allied forces, enhancing coordination and decision-making.

Cloud computing represents the foundational paradigm for elastic and on-demand
provisioning of computational and storage resources in modern military infrastructures.
Defined by the National Institute of Standards and Technology (NIST) as “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of config-
urable computing resources,” cloud computing enables mission-critical applications to
dynamically scale according to operational requirements [2]. Within the defence context,
cloud computing delivers strategic advantages across multiple layers of command, con-
trol and intelligence operations — supporting data aggregation, secure mission planning,
joint intelligence sharing and logistics optimisation.

Three service models — infrastructure as a service (IaaS), platform as a service
(PaaS) and software as a service (SaaS) — enable different levels of abstraction and
control. In defence settings, IaaS is particularly relevant as it allows fine-grained control
over workloads while leveraging cloud-native scalability and resilience. Deployment
models such as private, public, hybrid or community clouds offer flexible options for
balancing sovereignty, security and scalability [36].

22

2.4 CLOUD, FOG AND EDGE COMPUTING IN DEFENCE

The use of open-source platforms such as OpenStack further extends virtualisa-
tion into scalable and modular HPC infrastructures. OpenStack orchestrates compute,
network and storage resources and supports advanced features like Non-unified Mem-
ory Access (NUMA)-aware scheduling, Single Root I/O Virtualisation (SR-IOV) for
near-native I/O performance and containerised workloads in edge or cloud environ-
ments [38]. In confidential HPC scenarios, paravirtualisation and hardware-assisted
memory management enable secure workload execution with minimal performance
overhead, even in virtualised environments [22].

The interplay between virtualisation and cloud computing enables defence organ-
isations to transition from static, siloed systems toward agile, software-defined and
policy-enforceable infrastructures. This evolution is essential to support emerging re-
quirements in confidentiality, interoperability and operational autonomy across coalition
and sovereign environments.

In practical terms, cloud environments abstract physical hardware into software-
defined pools of resources, managed via orchestration platforms that support IaC and
DevSecOps workflows. For military cloud deployments, this means rapid instantiation
of mission-specific environments, policy-based deployment of confidential workloads
and real-time replication of strategic datasets across redundant availability zones. Cloud-
native technologies such as container orchestration (e.g. Kubernetes), service meshes
and CI/CD pipelines facilitate modularity and rapid adaptability — core requirements
in dynamic battlefield conditions.

Despite these benefits, the centralised nature of hyperscale clouds also introduces
operational limitations. In high-threat environments with unreliable or denied connec-
tivity, dependence on distant data centres for mission execution creates unacceptable
latency and availability risks. Moreover, defence missions require sovereign control over
workload execution and data lifecycle management — constraints that traditional public
cloud deployments do not natively satisfy. As a result, the emergence of sovereign cloud
initiatives — such as the AWS ESC — seeks to reconcile the benefits of cloud elasticity
with strict jurisdictional and policy-based control over digital assets [65].

The AWS ESC is designed to meet the specific needs of public sector customers in
the EU, ensuring that data remains within the jurisdiction of the EU and is subject to its
legal frameworks. This initiative highlights the growing importance of data sovereignty
in cloud computing, particularly for defence applications where sensitive information
must be protected from external threats and regulatory uncertainties [65].

From a capability standpoint, military cloud environments must enforce compli-
ance with mission assurance standards, such as the NATO FMN Spiral Specifications
and national cyber resilience frameworks. This necessitates the integration of secure
enclave technologies (e.g. Nitro Enclaves or SEV-SNP-based VMs), policy-driven key
management infrastructures and attestation-enabled service meshes that allow only
verified workloads to access classified resources. Thus, while cloud computing offers
the highest degree of elasticity, its defence-grade applicability depends entirely on the
deployment of confidentiality, sovereignty and zero-trust enhancements that align with
coalition-level operational and regulatory expectations [43], [53], [82].

2.4.3 Fog Computing
Fog computing extends cloud computing capabilities to the edge of the network, en-

abling data processing closer to the data source. This paradigm reduces latency and

23

BACKGROUND

bandwidth usage by processing data locally rather than transmitting it to centralised
data centres [84].

For military operations, fog computing is particularly beneficial in environments
with limited connectivity or where real-time data processing is crucial. By processing
data at or near the source, such as on a battlefield or in remote locations, fog computing
supports timely decision-making and reduces the reliance on constant connectivity to
central servers.

Fog computing has emerged as a critical paradigm in modern distributed computing
architectures, particularly in defence environments where latency, bandwidth and data
sovereignty are paramount. It acts as an intermediary layer between the cloud and
edge devices, addressing the inherent limitations of both edge and cloud computing by
providing decentralised processing capabilities closer to data sources [58].

Unlike conventional cloud-centric models, where data is transmitted to distant data
centres, fog computing leverages geographically distributed nodes — such as routers,
base stations and gateways — to process, analyse and store data locally or regionally. This
proximity to end devices dramatically reduces transmission delays, enhances bandwidth
efficiency and facilitates real-time or near-real-time decision-making, which is crucial
for mission-critical military applications.

In a defence context, the relevance of fog computing is particularly evident in sce-
narios requiring stringent requirements for low-latency communication, high availability
and secure operations across potentially intermittent and constrained network environ-
ments. Applications include tactical command and control systems, autonomous vehicle
coordination and sensor networks for battlefield surveillance, where instantaneous data
processing can be life-saving [67].

Nevertheless, fog computing environments introduce complex challenges, especially
regarding resource management, security and orchestration. Given the heterogeneity of
fog nodes — ranging from lightweight devices with limited resources to powerful edge
servers — task offloading and resource allocation require sophisticated optimisation
strategies. Traditional cloud-oriented algorithms are insufficient due to their assumptions
of abundant and homogeneous resources.

Recent research proposes heuristic and metaheuristic approaches, such as the Multi-
Objective Firefly Algorithm (MFA), to address these challenges by optimising trade-offs
between conflicting Quality of Service (QoS) parameters, notably energy consump-
tion and transmission delay [58]. The MFA dynamically assigns computational tasks
based on real-time assessments of device availability, workload characteristics and net-
work conditions, achieving significant improvements in resource utilisation and system
responsiveness.

Security remains a foundational concern within fog computing. The decentralised
nature of fog architectures expands the attack surface, making nodes vulnerable to unau-
thorised access, data breaches and Denial of Service (DoS) attacks. Unlike traditional
perimeter-based defences, securing fog environments requires context-aware, distributed
security mechanisms capable of autonomous detection, mitigation and recovery. Recent
advancements advocate for the integration of Al-driven security orchestration frame-
works to automate threat response across heterogeneous fog infrastructures, especially
within 5G and Beyond 5G (B5G) ecosystems [67].

Furthermore, maintaining data sovereignty and operational security within multina-
tional defence coalitions imposes strict requirements on how and where data is processed
within fog nodes. This necessitates the deployment of Trusted Execution Environments
(TEEs) and hardware-based confidential computing techniques to safeguard sensitive
information during computation, even in potentially untrusted environments.

24

2.4 CLOUD, FOG AND EDGE COMPUTING IN DEFENCE

The strategic integration of fog computing into connected defence platforms en-
hances operational agility, resilience and security. It enables distributed intelligence
across the tactical edge while adhering to the fundamental principles of data sovereignty,
security-by-design and interoperability — cornerstones for next-generation multinational
military operations.

2.4.4 Edge Computing

Edge computing involves processing data at the periphery of the network, nearer than
fog computing to the data source, rather than relying on a centralised data-processing
warehouse. This approach minimises latency and bandwidth use, which is critical for
applications requiring real-time processing and response [15].

In defence applications, edge computing enables devices such as drones, sensors
and autonomous vehicles to process data locally, allowing for immediate analysis and
action. This capability is vital in scenarios where rapid response times are essential and
connectivity to central data centres may be intermittent or unavailable.

Building upon the decentralised processing capabilities enabled by fog computing,
edge computing constitutes the most granular manifestation of distributed computing
architectures. While fog computing aggregates and processes data within intermediate
nodes such as gateways and regional servers, edge computing further advances this
paradigm by embedding computational resources directly at or near the data source [15].

Edge computing represents a strategic enabler for time-sensitive and autonomy-
driven military operations by minimising the distance between data generation, process-
ing and actionable decision-making. Tactical platforms such as unmanned aerial vehicles,
battlefield sensor networks and autonomous ground vehicles benefit significantly from
edge architectures, where even minimal latencies in data processing can determine
mission success or failure [69].

Fundamentally, edge computing decentralises not only computation but also stor-
age and control, creating a distributed intelligence landscape that enhances operational
resilience and reduces reliance on vulnerable communication backhauls. By performing
data preprocessing, anomaly detection and initial analytics locally, edge devices enable
the selective transmission of high-value, prefiltered information to higher-echelon fog or
cloud infrastructures [59]. This selective data propagation mitigates bandwidth satura-
tion, improves energy efficiency and enhances the robustness of situational awareness
frameworks under adversarial conditions.

The architectural design of edge computing environments in defence contexts
must account for resource constraints, intermittent connectivity and heightened security
requirements. Lightweight machine learning models, often optimised for low-power
inference through pruning, quantisation and hardware acceleration, are increasingly
deployed to perform sophisticated analytics at the tactical edge [73]. For instance,
field-programmable gate arrays (FPGAs) and application-specific integrated circuits
(ASICs) have been demonstrated to significantly accelerate neural network inference on
edge platforms, achieving multi-fold improvements in latency and energy consumption
relative to general-purpose processors [72].

From a security perspective, edge nodes represent critical vulnerabilities within the
operational architecture due to their exposure to physical tampering and cyber threats.
Advanced security mechanisms such as hardware-based Trusted Platform Modules
(TPM), secure boot protocols, remote attestation and confidential computing via Trusted
Execution Environments (TEEs) are indispensable for ensuring data integrity, confiden-

25

BACKGROUND

tiality and trustworthiness of computations performed at the edge [60]. These measures
provide cryptographic guarantees that uphold mission assurance even in contested
electromagnetic environments.

Moreover, the emergence of 5G and B5G networks acts as a catalyst for extend-
ing edge capabilities by delivering ultra-reliable, low-latency communication (URLLC)
and massive machine-type communications (mMTC). The tight integration of edge
computing with advanced wireless infrastructures enables distributed orchestration of
computational tasks, seamless mobility support and resilient mission continuity across
dynamic and geographically dispersed operational theatres [67].

In synthesising computation, storage, analytics and security at the data origin, edge
computing transforms tactical platforms into intelligent, autonomous and sovereign
digital entities. It plays an indispensable role in next-generation defence concepts such
as Multi-Domain Operations (MDO), Joint All-Domain Command and Control (JADC2)
and the Federated Mission Networking (FMN) vision of NATO. By complementing
cloud and fog layers, edge computing forms the foundation for resilient, interoperable
and secure connected defence infrastructures capable of operating effectively even under
conditions of degraded communications or adversarial disruption.

The integration of virtualisation, cloud, fog and edge computing creates a robust
and flexible computing environment tailored to the unique demands of defence op-
erations. Virtualisation provides the foundational layer for resource abstraction and
isolation. Cloud computing offers scalable and centralised resources for data storage
and application deployment. Fog computing bridges the gap between the cloud and the
edge, enabling localised processing and decision-making. Edge computing empowers
devices at the network’s periphery to operate autonomously and efficiently.

Together, these technologies support a comprehensive computing infrastructure that
enhances operational effectiveness, resilience and adaptability in diverse and challenging
military environments.

Major cloud service providers, such as AWS, have increasingly recognised the critical
requirements of defence and public sector organisations operating across cloud, fog and
edge environments. AWS has developed specialised services and deployment models
that align with the operational constraints and sovereignty requirements inherent in
defence infrastructures.

At the cloud layer, AWS GovCloud (US) and the forthcoming AWS ESC exemplify
dedicated regions designed to meet stringent regulatory, compliance and operational
control standards [65]. These regions ensure that mission-critical data remains within
controlled jurisdictions, providing foundational capabilities for classified and coalition-
based workloads.

For fog computing scenarios, AWS Outposts extends the AWS cloud model into
on-premises and forward-operating locations, enabling the deployment of native AWS
services with reduced latency and local data processing capabilities. By deploying
Outposts at regional bases or naval vessels, defence organisations can achieve operational
resilience and situational responsiveness without relinquishing control over sensitive
data [65].

At the tactical edge, AWS Snowball Edge and AWS Snowcone devices provide
ruggedised, portable computing and storage resources that support disconnected op-
erations in contested or bandwidth-limited environments. These edge devices enable
local execution of mission applications, Al inferencing, sensor data aggregation and
encrypted data persistence, all while maintaining a cryptographically verifiable security
posture through features such as secure enclave-based computation [65].

Furthermore, the AWS Wavelength service, designed to extend 5G networks with

26

2.4 CLOUD, FOG AND EDGE COMPUTING IN DEFENCE

ultra-low latency cloud services at the network edge, offers promising capabilities for
future integration into tactical communication infrastructures. This service facilitates
distributed intelligence by enabling mobile platforms to access cloud-native services
with minimal delay, supporting mission-critical analytics and decision-making at the
point of need.

AWS'’s approach to cloud, fog and edge computing reflects a comprehensive strategy
to support sovereign, resilient and scalable defence architectures. The seamless integra-
tion of these layers empowers defence organisations to dynamically shift workloads
between central, regional and tactical nodes based on mission requirements, connec-
tivity conditions and security policies, thus aligning with the overarching objectives
of connected defence platforms. The concept of confidential computing has emerged
as a critical advancement in response to growing concerns regarding data sovereignty,
privacy and security in cloud computing environments. Traditional cloud architectures
primarily focus on securing data at rest and in transit. However, they offer limited pro-
tection for data during processing, where vulnerabilities to insider threats, compromised
hypervisors or untrusted administrators may exist.

confidential computing addresses this security gap by integrating hardware-based
Trusted Execution Environments (TEEs) and confidential computing technologies into
the cloud infrastructure itself. These mechanisms enable the execution of sensitive
workloads within isolated, attested and cryptographically protected environments, en-
suring that data remains secure even during computation. Through remote attestation
protocols, organisations can verify the integrity and trustworthiness of the underlying
infrastructure before sensitive information is processed.

In the context of defence, government and critical industries, Confidential Cloud
provides a technological foundation for enforcing strict data residency, sovereignty and
operational control requirements. By embedding cryptographic trust at the infrastruc-
ture level, confidential computing architectures facilitate secure MDOs, coalition-based
information sharing and compliance with stringent regulatory frameworks such as the
General Data Protection Regulation (GDPR) and emerging sovereign cloud standards.

Major cloud service providers have begun to incorporate confidential computing
capabilities into their service offerings, recognising the imperative for verifiable trust
in sensitive and mission-critical applications. These advancements not only enhance
the security posture of cloud environments but also enable new operational models
where sensitive workloads can be securely deployed across public, hybrid and edge
cloud infrastructures without compromising confidentiality, integrity or sovereignty.

Cloud providers such as AWS have introduced specialised confidential computing
offerings to address the stringent security and sovereignty requirements of defence
and public sector organisations. AWS Nitro Enclaves, a key component of this strat-
egy, enable the isolation of sensitive workloads within dedicated, cryptographically
attested execution environments, without requiring changes to existing application
architectures [65].

Nitro Enclaves operate by partitioning off portions of an EC2 instance’s memory and
CPU resources to create isolated enclaves that are inaccessible even to the instance owner,
hypervisor or operating system. These enclaves leverage hardware-based attestation
mechanisms to establish verifiable trust in the enclave’s configuration and integrity
before sensitive data or cryptographic materials are provisioned. This architecture aligns
with Confidential Computing principles, ensuring that data remains protected not only
at rest and in transit but also during processing [65].

In parallel, the AWS ESC initiative aims to extend these capabilities by offering
physically and logically separated cloud regions within the European Union (EU),

27

BACKGROUND

operated by EU personnel under EU jurisdiction. This framework integrates confidential
computing technologies such as Nitro Enclaves into sovereign cloud environments,
providing verifiable guarantees for data residency, operational control and security
compliance. The result is a comprehensive confidential computing model that meets
both technical and geopolitical requirements for sensitive workloads.

Moreover, AWS Key Management Service (KMS) integrates with Nitro Enclaves to
enable enclave-restricted cryptographic key operations. This ensures that keys used for
encryption, decryption and signing can only be accessed by verified and attested enclaves,
further enhancing the confidentiality and sovereignty of mission-critical data [65].

The AWS approach to confidential computing thus enables defence organisations
to operationalise zero-trust security principles, enforce strict data residency policies and
deploy sensitive workloads in cryptographically isolated environments. These capabili-
ties are essential for supporting coalition operations, sovereign mission mandates and
multinational interoperability initiatives such as NATO Federated Mission Networking
(FMN).

By embedding confidential computing mechanisms into its sovereign cloud archi-
tecture, AWS facilitates the creation of secure, policy-enforced digital environments that
uphold both technological and strategic imperatives for modern defence infrastructures.

2.5 HIGH-PERFORMANCE COMPUTING FOR DEFENCE APPLICATIONS

High Performance Computing (HPC) refers to the use of aggregated computing power
to solve complex computational problems far beyond the capabilities of standard servers
or desktop systems. Characterised by massively parallel processing architectures, tightly
coupled clusters and high-throughput interconnects, HPC systems enable the efficient
handling of vast datasets and computationally intensive simulations across scientific,
industrial and military domains [39], [57].

Fundamentally, HPC systems are designed to maximise computational throughput,
minimise latency and deliver near-RT processing capabilities. They consist of hundreds
to hundreds of thousands of interconnected compute nodes, often equipped with multi-
core CPUs, high-bandwidth memory architectures and accelerators such as Graphics
Processing Units (GPUs) [39]. Each node contributes to solving a fraction of the problem
space, orchestrated via distributed scheduling systems that manage task allocation,
resource synchronisation and data communication.

Traditionally, HPC has been associated with on-premises supercomputers housed
in dedicated facilities, exemplified by systems such as El Capitan, currently the world’s
fastest supercomputer [83]. These facilities feature highly specialised infrastructure
optimised for cooling, power efficiency and high-speed interconnection, often employing
Remote Direct Memory Access (RDMA) fabrics such as InfiniBand to minimise latency
and maximise data throughput.

In practice, HPC applications encompass a wide range of domains including weather
prediction, nuclear simulations, computational fluid dynamics, genomic sequencing and
increasingly, artificial intelligence model training. The distinguishing characteristic of
HPC workloads lies in their requirement for extensive parallelism, where computational
tasks are decomposed into concurrent operations across numerous processing elements.

A critical distinction must be made between general-purpose computing and HPC:
whereas conventional systems can handle parallel workloads to a limited extent via
multi-threaded processing, HPC systems are purpose-built for highly parallel execution
at massive scale, supporting both tightly coupled and massively parallel workloads [39].

28

2.5 HIGH-PERFORMANCE COMPUTING FOR DEFENCE APPLICATIONS

From an architectural perspective, HPC systems typically adopt one of two paradigms:

¢ Tightly coupled clusters where nodes share memory spaces or low-latency inter-
connects, enabling high degrees of inter-process communication.

* Loosely coupled grids where jobs are independently executed across distributed
resources with minimal interdependence.

The boundary between high-performance enterprise clusters and true HPC is
defined by scale, interconnect efficiency and workload characteristics. HPC begins where
the orchestration of thousands of cores and high-speed synchronisation mechanisms
becomes essential to meet workload demands — typically when problems cannot be
resolved within the memory, compute or I/O limits of a single system or modest
cluster [57].

With the advent of cloud computing, HPC is no longer confined to traditional on-
premises facilities. Cloud-based HPC (HPCaaS) services democratise access to scalable,
high-performance resources, allowing organisations to elastically provision compute
clusters without upfront capital expenditure [39]. Nevertheless, challenges related to
network latency, workload orchestration and security — especially for sensitive defence-
related applications — persist and necessitate careful architectural considerations.

The integration of confidential computing into HPC environments addresses critical
trust concerns by ensuring that data remains protected during computation, a concept
pivotal for military and coalition-based scenarios. Trusted Execution Environments
(TEEs) such as AMD Secure Encrypted Virtualisation (SEV-SNP) and Intel SGX enable
the secure processing of classified workloads on both dedicated and public cloud HPC
infrastructures [39].

In the defence context, HPC forms an indispensable pillar for advanced simula-
tion capabilities, operational planning, predictive analytics and the RT fusion of multi-
domain operational data. Its role becomes even more critical when operating across
coalition networks, necessitating architectures that combine raw computational power
with sovereignty-preserving and cryptographically verifiable execution environments.

The integration of HPC capabilities into defence infrastructures represents a pivotal
development in addressing the escalating computational demands of modern military
operations. HPC enables the simulation of complex physical systems, the rapid analysis
of vast datasets and the development of predictive models essential for mission-critical
decision-making [16]. Historically, the Department of Defense (DoD) has recognised
the strategic value of HPC through initiatives such as the High Performance Comput-
ing Modernisation Program (HPCMP), which consolidated disparate computational
resources across service branches into a unified, scalable and resilient ecosystem [16].

HPC infrastructures in defence settings serve a multitude of operational needs,
ranging from computational fluid dynamics for aircraft design to RT battlefield simula-
tions and the optimisation of logistics and supply chain operations. Through parallel
processing and distributed architectures, HPC platforms dramatically reduce the time-
to-solution for simulations that would otherwise be computationally prohibitive [34].
Moreover, the emergence of High Performance Data Analytics (HPDA) has expanded
the traditional HPC role from purely physics-based simulations towards encompassing
machine learning, artificial intelligence (Al) and autonomous system training work-
loads [16].

A defining characteristic of defence-oriented HPC is the necessity for continuous
modernisation. Given the rapid obsolescence of hardware and the evolving threat
landscape, defence HPC environments undergo systematic technology refresh cycles,

29

BACKGROUND

typically investing significant resources annually to maintain competitiveness [16].
Modern acquisition strategies increasingly rely on application-centric benchmarking to
ensure that new systems reflect the actual computational workloads of defence research
and operational communities, rather than generic benchmarks such as LINPACK or
HPCG [16].

Furthermore, confidentiality, integrity and availability requirements in defence HPC
infrastructures demand robust security postures. Secure enclaves, Trusted Platform
Modules (TPMs) and attested hardware environments are increasingly integrated to
ensure that sensitive simulations and mission planning data remain protected throughout
the computational lifecycle [61].

The role of HPC extends beyond pure computational acceleration; it acts as an
enabler of digital engineering, allowing for the early virtual integration and testing of
complex systems, significantly reducing the cost, time and risk associated with physical
prototyping. Initiatives such as the Computational Research and Engineering Acquisition
Tools and Environments (CREATE) programme exemplify how HPC supports the
entire lifecycle of military platforms, from initial concept development to sustainment
engineering [16].

Notably, advancements in hybrid architectures, combining traditional HPC nodes
with specialised accelerators such as Graphics Processing Units (GPUs) and Tensor
Processing Units (TPUs), are transforming the computational landscape. These heteroge-
neous environments enable the efficient execution of both numerical simulations and
Al-driven workflows, supporting evolving operational paradigms that blend physics-
based and data-driven approaches [72], [73].

The trend towards decentralised high performance edge computing also highlights
the necessity of bridging centralised HPC facilities with edge nodes capable of pre-
processing, filtering and selectively forwarding data to core data centres for deeper
analysis [49]. This integration is critical for time-sensitive missions where low-latency;,
high-throughput and operational resilience are paramount.

HPC constitutes a cornerstone of next-generation defence IT architectures, underpin-
ning RT operational capabilities, advanced simulations and sovereign digital ecosystems.
The strategic alignment of HPC resources with mission objectives not only enhances
operational readiness but also ensures technological superiority in a digitally contested
battlespace.

Beyond traditional on-premises deployments, major cloud providers have expanded
their service offerings to support HPC workloads through scalable, cloud-native plat-
forms. AWS has emerged as a impactful player in this field by delivering specialised
HPC services that align with the demands of scientific, industrial and increasingly
military applications.

AWS offers a suite of HPC-optimised services, including EC2 instances with
high core counts, enhanced memory bandwidth and low-latency networking features.
Compute-optimised instance families, such as C6gn and Hpcéid, are specifically designed
for tightly coupled HPC workloads, delivering high performance per core while main-
taining cost efficiency. Moreover, AWS Elastic Fabric Adapter (EFA) enables applications
requiring high levels of inter-node communication, such as computational fluid dynam-
ics or large-scale simulations, to achieve near-native Message Passing Interface (MPI)
performance by providing low-latency, high-bandwidth networking capabilities [27].

To orchestrate complex HPC environments, AWS ParallelCluster offers an open-
source cluster management tool that automates the deployment and scaling of HPC
clusters on AWS infrastructure. It supports traditional schedulers such as SLURM,
Torque and AWS Batch, enabling seamless migration of existing HPC workflows to the

30

2.6 SENSOR FUSION AND SITUATIONAL AWARENESS

cloud while providing elasticity, automation and cost visibility. For highly sensitive or
sovereign workloads, AWS integrates ParallelCluster deployments with Nitro-based EC2
instances, ensuring hardware-enforced isolation and offering the possibility to operate
within confidential computing enclaves.

AWS also supports hybrid HPC architectures through services such as AWS Out-
posts and AWS Snowball Edge, which allow organisations to deploy HPC clusters at the
edge or in disconnected environments. These capabilities are particularly relevant for
defence operations, where tactical field deployments require both substantial compute
power and data sovereignty. In addition, AWS Batch simplifies the orchestration of
containerised HPC workloads, offering flexible resource management, job dependency
tracking and fault-tolerant execution across multi-instance compute environments.

To accelerate data-intensive HPC workflows, AWS offers high-performance storage
solutions such as Amazon FSx for Lustre, a fully managed file system optimised for
fast processing of workloads like machine learning model training, video rendering
and large-scale simulations. FSx for Lustre can be directly linked to Amazon S3 storage,
providing a seamless data pipeline between durable object storage and high-throughput
file systems.

Security remains a primary concern in cloud-based HPC deployments. AWS im-
plements confidential computing principles through its Nitro Hypervisor and Nitro
Enclaves, ensuring that sensitive HPC workloads can be processed securely within
attested, isolated execution environments. Furthermore, AWS KMS and integration
with external key management systems enable fine-grained control over cryptographic
operations, meeting stringent requirements for classified and mission-critical data pro-
tection [65].

Through the combination of scalable HPC infrastructure, secure execution environ-
ments and sovereign operational models, AWS enables defence organisations to conduct
large-scale simulations, predictive modelling, RT sensor data fusion and mission ana-
lytics without compromising security, confidentiality or compliance. The integration of
confidential HPC capabilities into sovereign cloud architectures, such as the AWS ESC,
represents a decisive enabler for next-generation connected defence operations.

2.6 SENSOR FUSION AND SITUATIONAL AWARENESS

As military operations become increasingly reliant on digitised and interconnected
environments, the need for comprehensive situational awareness (SA) has intensified
across all operational domains. Situational awareness refers to the capability to perceive,
comprehend and project critical elements of the battlespace, enabling timely and in-
formed decision-making under dynamic conditions [48]. In this context, the Internet of
Military Things (IoMT) emerges as a transformative paradigm, leveraging a vast ecosys-
tem of interconnected sensors, platforms and devices to support enhanced operational
awareness and mission effectiveness [54].

The IoMT ecosystem builds upon the core principles of the broader Internet of
Things (IoT) but introduces additional constraints regarding mobility, security, energy
efficiency and operational resilience under adversarial conditions. Through dense net-
works of interconnected edge devices — including unmanned vehicles, surveillance
sensors and wearable systems — the [oMT facilitates real-time data collection, fusion
and dissemination across distributed command structures [48], [71].

A fundamental enabler of this vision is multi-sensor data fusion, integrating het-
erogeneous data sources to generate coherent and actionable battlefield intelligence.

31

BACKGROUND

Recent advances in machine learning-based fusion techniques, such as convolutional
neural networks (CNNs) and reinforcement learning (RL) frameworks, significantly
enhance object detection, threat identification and environmental understanding [48],
[71]. By combining visual, infrared and radar sensor modalities, fused imagery provides
improved depth perception, better robustness under low-visibility conditions and more
accurate target classification compared to single-sensor systems.

In parallel, the integration of cloud-edge collaboration architectures enables scalable,
resilient processing across IoMT infrastructures. Cloud platforms provide centralised,
large-scale analytics capabilities for strategic intelligence, while edge nodes ensure tacti-
cal responsiveness through localised inference and decision-making [54]. Techniques
such as grey relational analysis (GRA) combined with backpropagation neural networks
(BPNN) have been successfully applied to risk situational awareness in power distribu-
tion scenarios under cloud-edge architectures, offering promising parallels for military
applications [54].

However, the distributed nature of IoMT also introduces substantial challenges.
Secure communication, data integrity and trust management are critical, particularly
in coalition environments where devices may operate across different jurisdictions.
Moreover, network resource constraints and the need for RT responsiveness demand
optimised communication and computation strategies, including federated learning
models and adaptive task offloading mechanisms [48], [71].

Within autonomous systems, Vehicle-to-Infrastructure Multi-Sensor Fusion (V2I-
MSF) frameworks further demonstrate the operational value of cooperative perception
architectures. By integrating data from vehicle-mounted and roadside infrastructure
sensors, V2I-MSF enhances environmental visualisation, improves motion estimation and
strengthens obstacle avoidance capabilities, particularly in complex urban or contested
settings [71].

Consequently, the convergence of situational awareness, [oMT, cloud-edge collabo-
ration and advanced data fusion techniques defines a critical capability layer for future
military operations. These developments not only enhance decision superiority across
tactical, operational and strategic echelons but also align with broader initiatives for
secure, sovereign and resilient military digital infrastructures.

In the evolving landscape of connected defence operations, cloud-based architec-
tures play an increasingly critical role in enabling RT SA and advanced sensor fusion.
AWS has strategically expanded its service portfolio to address the stringent require-
ments of military and public sector organisations, offering scalable, secure and resilient
capabilities that can be directly leveraged to enhance IoMT infrastructures and opera-
tional intelligence.

At the data ingestion layer, AWS IoT Core facilitates the secure, low-latency col-
lection of telemetry data from a broad array of distributed military sensors, including
unmanned aerial systems, ground vehicles and environmental monitoring devices. Its
native support for secure device authentication, fine-grained access control and end-to-
end encryption ensures the integrity and confidentiality of operational data from edge
to cloud. Furthermore, AWS IoT Greengrass extends cloud capabilities to edge nodes by
enabling local data pre-processing, event-driven analytics and disconnected operations
— critical features for deployed assets operating in contested or bandwidth-constrained
environments [28].

For the orchestration and integration of heterogeneous sensor data, AWS offers
a range of serverless services such as AWS Lambda and AWS Step Functions. These
services enable RT, event-driven workflows that perform initial data normalisation, vali-
dation and fusion, reducing data redundancy and enhancing the quality of downstream

32

2.7 C4ISR: COMMAND, CONTROL, COMMUNICATIONS, COMPUTERS,
INTELLIGENCE, SURVEILLANCE AND RECONNAISSANCE

analytics. Complex sensor fusion pipelines can be constructed using AWS Kinesis for
RT data streaming and aggregation, allowing multiple sensor modalities, including
electro-optical, infrared and radar inputs, to be synchronised and correlated at scale.

In the domain of machine learning-enabled situational awareness, Amazon Sage-
Maker provides a robust platform for developing, training and deploying deep learning
models optimised for sensor data fusion tasks. Models for target detection, classification
and threat prioritisation can be rapidly prototyped and deployed, with support for edge
inference through SageMaker Edge Manager. This enables near-RT threat assessment
and decision support capabilities to be deployed directly onto edge nodes, reducing
reliance on cloud uplinks and improving operational agility [29].

To visualise and disseminate the fused situational picture, AWS Amplify and
Amazon Location Service offer mechanisms to build secure, RT geospatial applications
that render integrated sensor data overlays. These tools support the dynamic updating
of the Common Operational Picture (COP), enabling commanders and analysts to
maintain a comprehensive, coherent and actionable understanding of the battlespace
across multiple domains.

Security and compliance underpin the entire AWS service offering. Sensitive sit-
uational awareness data flows can be protected through AWS Nitro Enclaves, which
provide isolated, attested execution environments for critical data processing tasks. Ad-
ditionally, the deployment of such services within AWS GovCloud (US) or the AWS ESC
ensures adherence to defence-grade regulatory requirements, including data residency,
controlled access and operational sovereignty [65].

The strategic integration of AWS cloud, edge and machine learning services offers
a robust foundation for achieving advanced situational awareness and resilient sensor
fusion in modern military operations. These capabilities align with the overarching
principles of confidentiality, integrity and availability, while supporting coalition in-
teroperability, operational flexibility and sovereign control over mission-critical data
infrastructures [28].

2.7 C4ISR: COMMAND, CONTROL, COMMUNICATIONS, COMPUTERS, INTELLI-
GENCE, SURVEILLANCE AND RECONNAISSANCE

The concept of C4ISR — Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance — represents a comprehensive operational and technologi-
cal framework essential for orchestrating military operations in increasingly complex and
contested environments. C4ISR systems aim to integrate multi-domain data acquisition,
secure communications, computational processing and decision-support mechanisms
into a unified, dynamic operational picture that facilitates situational awareness, mission
command and synchronised execution [25].

At its foundation, C4ISR seeks to enable the rapid and reliable dissemination of accu-
rate, actionable information across tactical, operational and strategic levels of command.
This requires architectures capable of assimilating large volumes of heterogeneous data
in real time, synthesising critical intelligence and securely distributing insights even
under conditions of degraded communication or electromagnetic spectrum denial [17].

Modern C4ISR systems increasingly rely on decentralised, service-oriented ar-
chitectures (SOAs), leveraging cloud, fog and edge computing paradigms to ensure
resilience, scalability and coalition interoperability. Research demonstrates that proba-
bilistic frameworks, such as Bayesian Networks (BN) and Dynamic Bayesian Networks
(DBN), enhance the resilience assessment of C4ISR infrastructures, enabling proactive

33

BACKGROUND

risk mitigation and adaptive resource reallocation in contested operational environ-
ments [12].

Service deployment in C4ISR must accommodate limited bandwidth, dynamic
topologies and adversarial threats. Innovative approaches, such as service orchestra-
tion through Quantum Evolutionary Algorithms (QEAs) and Multi-Objective Genetic
Simulated Annealing Algorithms (MOGSAAs), optimise the placement and replication
of critical services, improving system robustness and communication efficiency under
constrained conditions [13], [18].

Given these evolving operational demands, cloud service providers such as AWS
offer a portfolio of technologies that align with the architectural principles of next-
generation C4ISR systems. At the data ingestion layer, AWS IoT Core enables the secure
connection and management of thousands of fielded sensors, platforms and autonomous
systems. It ensures data integrity through device attestation, end-to-end encryption and
fine-grained identity and access management policies [28].

At the tactical edge, AWS IoT Greengrass extends cloud-native capabilities to
local environments, supporting sensor fusion, event-driven processing and autonomous
decision-making even in intermittently connected or denied areas. This capability directly
addresses the need for resilience and operational continuity in dynamic theatres of
operation.

RT data aggregation and initial fusion are supported by AWS Kinesis, which pro-
vides scalable and low-latency streaming infrastructure. Tactical data from unmanned
systems, ground forces and maritime assets can be dynamically aggregated, filtered and
correlated, enabling the construction of a near-RT COP.

For higher-level analytics, AWS SageMaker offers a fully managed environment to
develop, train and deploy machine learning models for automated target recognition,
threat classification and predictive mission analytics. Integrated with AWS Ground
Truth, annotated multi-modal datasets from electro-optical, infrared and radar sensors
can be efficiently generated and used to train sensor fusion models [29].

Operational sovereignty and mission assurance are underpinned by AWS Nitro
Enclaves, providing isolated, attested execution environments for sensitive C4ISR work-
loads. Additionally, the use of AWS GovCloud and the emerging AWS ESC ensures
that mission data remains compliant with strict national sovereignty, security and data
residency requirements [65].

The integration of decentralised, sovereign and resilient cloud services into C4ISR
architectures enables a new level of operational agility, robustness and interoperability.
By leveraging distributed sensor integration, real-time fusion, secure processing and
sovereign cloud governance, connected defence platforms can maintain decision superi-
ority and mission effectiveness even in highly contested multi-domain environments.

2.8 RELATED WORK

The evolution of large-scale data platforms has been significantly influenced by develop-
ments in big data processing, open data management and distributed system design.
Several initiatives have addressed the challenges associated with data storage, manage-
ment, governance and analytical pipelines, offering valuable insights and architectural
paradigms. Nevertheless, when compared to the next-generation objectives pursued by
the OmniAware project — namely, the design of a sovereign, secure and interoperable
military data platform — certain gaps and limitations in existing platforms become
evident.

34

2.8 RELATED WORK

Smart Open Data As a Service (SODAS) [21] proposes an advanced open data
platform that enhances legacy systems such as Comprehensive Knowledge Archive
Network (CKAN) by introducing an extensible data model based on Data Catalog
Vocabulary Version 2 (DCATV2), RT data harvesting and flexible metadata management.
While SODAS addresses interoperability and data quality issues in civilian open data
ecosystems, it does not inherently incorporate sovereign execution, secure enclave pro-
cessing or resilience against adversarial conditions, which are central to OmniAware’s
military-grade requirements.

The Sparkling Water platform [9] demonstrates effective integration of data min-
ing libraries in distributed data processing environments. By developing a complete
software layer for executing various data mining steps, it highlights the performance
benefits achievable through distributed architectures. However, its focus remains on
horizontal scalability and machine learning performance rather than on secure data
sovereignty, trust federation or mission assurance — key pillars of OmniAware’s architec-
tural blueprint.

Efforts to unify heterogeneous storage systems have been explored by Nguyen and
Won [4] through the introduction of a Data Storage Adapter for big data platforms.
Their system simplifies access to diverse data storage engines and supports multiple
data processing frameworks. While this approach improves technical interoperability, it
lacks support for cryptographic trust anchors, attested data flows or sovereign control
mechanisms, all of which are integral to OmniAware’s secure multi-domain design.

In the domain of campus data governance, Zhao [62] proposes a big-data-driven
governance platform to address issues of data quality, standardisation and lifecycle man-
agement within smart campus environments. The focus on multi-layered architectures
comprising data governance, platform and service layers resonates conceptually with
OmniAware’s layered control plane. However, the scope of campus platforms is limited
to internal organisational needs and does not extend to coalition-based, contested or
sovereign operational scenarios envisioned for connected defence environments.

Recent research by Nagarkar et al. showcases the development of a multi-cloud
data pipeline for recommendation systems, integrating services across Google Cloud
and MongoDB Atlas. Their work underlines the feasibility of synchronising data and
machine learning workflows across heterogeneous cloud environments, which aligns
in part with OmniAware’s ambition to orchestrate mission-critical workloads across
sovereign cloud regions and tactical edge nodes. Nevertheless, their approach remains
oriented towards civilian content platforms without the embedded security, compliance
and sovereignty guarantees required for defence operations [55].

In summary, while significant advances have been made in data management,
distributed processing and interoperability across various domains, none of the surveyed
platforms fully address the stringent requirements for sovereignty, security, multi-domain
operational resilience and coalition interoperability. OmniAware distinguishes itself by
combining sovereign-controlled data orchestration, attested confidential processing and
dynamic multi-domain federation into an integrated architecture tailored specifically
for the demands of future coalition defence operations.

35

BACKGROUND

2.9 METHODOLOGICAL APPROACH AND STRUCTURAL OVERVIEW

To address the stated research questions, this thesis adopts a design science research

methodology [1], combining conceptual modelling, architectural design and prototype-

based validation. The central research artefact — a secure, sovereign and interoperable

data platform for defence use cases — is developed iteratively across all layers of the

NAFv4, with a strong focus on confidentiality, compliance and deployment realism.
The structure of the thesis reflects this layered approach:

¢ Chapter 1 introduces the research context, objectives and guiding questions.

¢ Chapter 2 lays the conceptual and methodological groundwork, covering relevant
standards, technologies and architectural principles.

* Chapter 3 presents the system architecture and design of the OmniAware Defence
Platform based on NAFv4 artefacts.

¢ Chapter 4 transitions to the implementation layer, including secure deployment
and integration aspects.

¢ Chapter 5 evaluates selected implementation facets under realistic constraints.

¢ Chapter 6 concludes the thesis and outlines avenues for further research and
operationalisation.

By structuring the work along the modelling-implementation-validation triad, this
thesis demonstrates the feasibility of a NATO-aligned, confidential computing-enabled
defence data platform, grounded in both academic rigour and operational applicability.

36

ARCHITECTURE AND DESIGN

Summary: Following the conceptual, regulatory and technological foundations estab-
lished in Chapter 2, this chapter transitions from architectural theory to system design.
It introduces the formal architecture of the OmniAware Core Platform and elaborates on
its realisation through NATO-compliant artefacts, attested infrastructure components
and security-validated deployment topologies.

The architecture is developed in alignment with the methodological pillars of
the NAFv4 and is implemented using the modelling methodology (cf. Section 2.2).
The design follows a viewpoint-based decomposition logic that ensures traceability
from strategic capability definitions to deployable service blueprints. The focus lies on
the practical instantiation of the sovereign, federated and secure platform defined in
Chapter 1, emphasising composability, attestation integrity and operational separation
of concerns.

To demonstrate applicability, the architecture is structured around two distinct
operational scenarios derived from mission requirements: Platform Health Monitoring
(PHM) and the Contextual Image Verification System (CIVS). Each use case guides the
capability mapping and view generation across NAFv4-compliant artefact layers. These
include, but are not limited to, the NSV-1 (System Deployment), NPV-1/2 (Architecture
Roadmap and Lines of Development) and NAV-1 (Standards and Reference Architecture)
viewpoints.

The PHM scenario serves as the primary design driver and is presented in full detail
across architecture and implementation layers. The CIVS scenario acts as a derivative
reference to demonstrate architectural extensibility and cross-domain applicability. This
modelling approach allows for the representation of both shared platform capabilities
and use-case-specific components while maintaining alignment with defence-grade
assurance frameworks.

The remainder of this chapter is organised as follows. Section 3.1 presents the
high-level capability and service model; Section 3.2 outlines the deployment architecture
through NAFv4 artefacts, including blackbox and system topology views; Section 3.3
addresses the confidential computing security layer and policy-enforced trust chain;
Section 3.4 defines critical interface designs. Where applicable, reference is made to
actual implementation artefacts, such as CloudFormation templates, CI/CD pipelines
and enclave attestation flows.

By linking NATO-aligned architecture modelling with verifiable security primitives,
this chapter lays the foundation for the system implementation outlined in Chapter 4
and the validation strategy discussed in Chapter 5.

37

ARCHITECTURE AND DESIGN
3.1 OVERVIEW AND VIEWPOINTS

Summary: This section establishes the architectural groundwork of the OmniAware
platform by structuring its logical model through a deliberately selected subset of
NAFv4 views. The chosen viewpoints—NCV-2, NCV-3, NSOV-3, NSOV-6 and NSV-1—enable
conceptual traceability between strategic capability evolution and realisable technical
deployment.

In particular, emphasis was placed on modelling service functions with fine granu-
larity to ensure traceable mapping to mission-driven capabilities. This modelling depth
supports composability, policy enforcement and infrastructure separation. Orchestration
logic (NSOV-6) and capability-to-function allocation (NSOV-3) were explicitly integrated
to uphold operational autonomy and deployment modularity.

The resulting architecture blueprint serves not only as a structural anchor for
subsequent cloud-native system design but also as an abstraction layer for reasoning
about security- and compliance-aligned deployment across sovereign execution domains.

3.1.1 Architectural Methodology and Modelling Approach

The architectural development presented in this chapter follows a structured, model-
driven methodology grounded in the NAFv4. The goal is to translate operational
mission requirements into technically sound, secure and interoperable cloud-native
system architectures. The modelling approach strictly adheres to a viewpoint-based
decomposition aligned with NAFv4, created in accordance with the modelling stack out-
lined in Section 2.2 to construct semantically valid, traceable and reusable artefacts [53],
[74].

The design process begins with the definition of concrete operational use cases — in
this thesis, PHM and CIVS — which are then mapped to capability structures in the NCV-
2 view. These capabilities are refined through logical activities (NLV), service function
mappings (NSV) and physical deployment artefacts (NPV), ensuring traceability across
all architectural layers. Special attention is given to integrating security and compliance
requirements into the modelling process from the outset, particularly with regard to
confidential computing, remote attestation and sovereign deployment strategies.

By adopting a formal and iterative architecture development methodology, this
thesis ensures that each modelled component is both contextually meaningful and
technically sound. The resulting architecture is designed not only to demonstrate the
feasibility of secure defence cloud deployments, but also to serve as a reusable blueprint
for future coalition-based mission platforms.

3.1.2 Contribution and Project-Specific Realisation

This section presents a major contribution of this thesis, reflecting the author’s origi-
nal implementation work, architectural synthesis and methodological decision-making
within the development of the OmniAware Connected Defence Platform. Building upon
the previously introduced conceptual foundations, this part transitions from theory to
practice, tracing how NAFv4-compliant architecture was instantiated and operationalised
through practical artefacts and modelled system views.

The contribution is structured around two main pillars:

38

3.1 OVERVIEW AND VIEWPOINTS

Methodological Reflection. While certain modelling elements were derived from
established NATO and AWS best practices, this thesis involved deliberate architectural
decisions tailored to the PHM use case. For instance, the inclusion of NSV-4a and
NSOV-6 was prioritised over more abstract orchestration chains (NSV-5) to increase
implementation realism. Similarly, NAV-1 was introduced manually, despite being
optional in the official viewpoint catalogue, to strengthen compliance traceability across
lifecycle stages.

1. Architectural Realisation: This includes the implementation of the NAFv4-compliant
models (e.g. NSV-4a, NSV-6, NPV-3), the development of a PHM-focused reference
architecture and the detailed representation of capability-to-technology mappings.
Each architecture artefact was manually modelled and validated using the mod-
elling methodology (cf. Section 2.2), ensuring traceability and semantic rigour.

2. Interface and Infrastructure Prototyping: As a practical realisation of the PHM
use case, this thesis provides a containerised microservice blueprint for attested
workloads, including enclave-enabled components. Core infrastructure templates,
secrets handling mechanisms and Vault/Key Management System (KMS) integra-
tions are highlighted as part of the implemented MVP.

By combining methodical modelling discipline with secure, infrastructure-as-code
deployments, this work demonstrates how defence-relevant confidentiality, compliance
and interoperability requirements can be translated into a working system foundation.
The presented implementation artefacts — architectural views, cloud infrastructure
modules and interface blueprints — constitute the tangible result of this research and
provide a reusable and extendable blueprint for future defence cloud developments.

3.1.3 Viewpoint Selection and Model Justification

The OmniAware platform was modelled in accordance with the NAFv4 viewpoint taxon-
omy realised using the tooling and validation principles defined earlier (cf. Section 2.2).
While the NAFv4 defines over 50 architectural viewpoints across its full specification,
this thesis adopts a deliberately reduced and semantically focused subset. This deci-
sion reflects both the constraints of a time-bounded PoC and the intention to maintain
traceability and model clarity without excessive redundancy. NSV-5 was omitted due to
redundancy with orchestration logic already embedded in NSOV-6.

NAFv4 itself encourages tailoring of the viewpoint catalogue based on relevance
and the following three selection principles were applied:

1. Relevance to mission modelling: Views were prioritised that directly support
capability decomposition, operational scenario realisation and service deployment.

2. Traceability across architectural layers: The chosen views enable semantic conti-
nuity from capability definition to physical deployment (e.g. NCV-2 — NSOV-3
— NSV-1 — NPV-2).

3. Modelling economy: Redundancies across views were consciously avoided by
using semantically expressive artefacts (e.g. NSOV-6 for both service grouping
and orchestration).

39

ARCHITECTURE AND DESIGN

Architectural Decision Rationale. The selection and structuring of views were not
based solely on tool availability or template conformance, but reflect applied modelling
decisions. Instead of pursuing comprehensive viewpoint coverage, the thesis concen-
trated on views with high architectural expressiveness and implementation relevance.
These choices were made based on a structured analysis of stakeholder priorities, ex-
pected functional coverage and practical constraints encountered during the modelling
phase. The result is a NATO-compliant architectural baseline that supports model reuse,
auditability and deployment-level realisability.

Viewpoint Selection Rationale. The final subset includes: NCV-2 (Capability Depen-
dencies), NCV-3 (Capability Roadmap), NSOV-3 (Service Functions), NSOV-6 (Service
Orchestration Logic), NSV-1 (System Deployment), NPV-2 (Resource Mapping) and
NAV-1 (Compliance Traceability). Several other candidate views — such as NSV-5 (Or-
chestration Chains), NLV-4 (Information Exchanges) and NAV-2 (Standards Coverage) —
were considered but intentionally excluded. NSV-5 was omitted due to redundancy with
orchestration logic already embedded in NSOV-6. NAV-2 and NLV-4 were deprioritised
due to limited marginal benefit for a first iteration model and insufficient tooling support
within Archi. These exclusions reflect a pragmatic modelling economy and deliberate
simplification to ensure semantic clarity and model completeness within the constraints
of the PoC scope.

Having justified the methodological selection and structuring of architectural view-
points, the following section introduces their concrete application to the operational
design of the OmniAware platform. In line with the capability-driven modelling paradigm
of NAFv4, this begins with the NCV-2 view — the conceptual anchor that maps mission-
specific capability clusters and their dependencies.

These capability definitions form the starting point for traceable refinement across
all subsequent viewpoints, enabling semantic alignment between strategic intent, service
orchestration and technical deployment. The capability view not only reflects stakeholder
priorities and use-case logic, but also structures the architectural backbone on which
service, orchestration and trust enforcement models are built.

3.1.4 Strategy

The following view illustrates the capability dependencies underlying the core archi-
tecture of the OmniAware platform. It highlights the incremental development and
integration of critical defence capabilities, ranging from foundational components such
as Secure Federated Data Exchange to advanced mission enablers such as Confidential
Al-based Mission Planning.

As depicted in Figure 3.1, the realisation of sovereign and mission-resilient capabil-
ities is built upon foundational layers such as secure infrastructure orchestration and
sovereign identity management. These core capabilities serve as enablers for higher-level
services such as confidential analytics and federated mission command and control (C2).
Dependencies between capabilities are represented using serving relationships, indicating
sequential or conditional development requirements.

* General: Cross-cutting platform-level enablers such as C1_Cloud Computing
Platform, C2_Sensor Data Ingestion and C4_Confidential Computing/Data
Sovereignty, providing the core infrastructure and security primitives.

40

3.1 OVERVIEW AND VIEWPOINTS

(" ca_Confident |
ial

Computing/D

C21_Weather o8 serves C22_Analyst o]
Pattern g—sewes—T Feedback
) 4 Loop

!
C

|
1

|

1

|

|

]

1

1

1

1

1

1

1

serves. 1
erves 1
T—— 1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3.1: NCV-2: OmniAware Capability Dependencies

¢ PHM: Prognostic and Health Management functions, including telemetry-based
analytics, component-level health assessment and survivability estimation (e.g.
C10-C186).

¢ CIVS: Visual Intelligence and Mission Simulation functions for real-time awareness,
pattern recognition and environmental impact analysis (e.g. C20-C24).

Each connection indicates a logical and traceable dependency that must be ful-
filled to enable downstream capabilities. For instance, C10_Vehicle Health Analytics
relies on foundational services for ingestion, normalisation and cloud orchestration.
Likewise, C24_Mission Impact Prediction requires sovereign data handling (C5) and
pre-processed inputs from visual and weather sources.

Capability Dependency Justifications. A detailed justification of all modelled capabil-
ity relationships is included in the appendix (cf. Appendix 1).

Design Considerations and Capability Prioritisation. The decomposition of the im-
plementation roadmap (cf. Figure 3.2) follows a capability-centric prioritisation that
reflects mission relevance, architectural dependency and system-level security impact
across the OmniAware platform. This prioritisation does not emerge from agile feature
breakdowns, but is instead anchored in a structured analysis of operational workflows
and stakeholder needs.

As outlined in Section 3.1.4, the capability structures and interdependencies were
derived from detailed BPMN models and strategic product documentation in the form
of PR/FAQ artefacts [75], [77], [79]. This modelling approach ensures that the platform’s
capability roadmap is not the result of arbitrary breakdowns, but is grounded in the
mission-centric logic of the PHM and CIVS use cases.

Capabilities deployed in the early phase (Q1) include foundational enablers such
as secure cloud computing, data ingestion and confidential computing. These are es-
sential for enabling trusted enclave execution, identity-based access control and policy
enforcement, forming the technological backbone for secure data processing. The subse-
quent phase (Q2) builds on this base and integrates telemetry-specific analytics such
as vehicle health monitoring, sensor fusion and early classification. These processing
functions are tightly coupled with upstream data ingestion and serve as prerequisites
for domain-specific logic.

Phases Q3 and Q4 progressively integrate more complex analytical and decision-
support capabilities. Q3 capabilities focus on applied health analytics and situational

41

ARCHITECTURE AND DESIGN

prediction — such as predictive maintenance and crew state estimation — which require
reliable, pre-processed data from earlier stages. Q4 introduces high-level situational
awareness features including Al-based image analysis, weather pattern recognition and
mission impact prediction. These capabilities synthesise and contextualise upstream
outputs to support operational planning and cross-domain decision-making.

By prioritising capability clusters based on functional dependencies, strategic mis-
sion alignment and feasibility considerations, the roadmap follows a pragmatic im-
plementation sequence. This sequence mirrors the dependency logic visualised in the
NCV-2 view (cf. Figure 3.1) and ensures traceability and coherence in line with NAFv4
architectural guidance.

This capability-centric decomposition ensures a secure, modular and scalable im-
plementation path in alignment with NAFv4 standards and the strategic objectives of
OmniAware.

Building upon the capability dependencies outlined in NCV-2, the following
roadmap illustrates the temporal evolution and sequencing of key capabilities across the
OmniAware platform. It highlights the staged development from foundational enablers
towards mission-critical analytics, simulation and decision-support functionalities.

12025

Q1 - Core /Enabl

C1_Cloud C5_NATO ff C11_Predictiv C16_Tactical
Computing Classification e Situational
Platform Processing Maintenance Awareness

C2_Sensor £l C10_Vehicle C13_Health- £ C20_Streamin &8
Data Health Based Task g Imagery
Ingestion Analytics Prioritisation Ingestion

C3Data o C12_Sensor .f] C14_Tactical C21_Weather .
Normalisation Fusion Vehicle Pattern
[Pre- Survivability Recognition

C4_Confident £ C22_Analyst C15_Occupan & C23_Tactical
ial Feedback cy and Crew Situational
Computing/D Loop State Awareness

C24_Mission
Impact
Prediction via

Figure 3.2: NCV-3: OmniAware Capability Roadmap

As illustrated in Figure 3.2, the roadmap decomposes the implementation timeline
into four sequential capability phases, aligned with quarterly milestones:

* Q1 - Core Infrastructure/Enablers: Deployment of foundational services, including
C1_Cloud Computing Platform, C2_Sensor Data Ingestiomn, C3_Data
Normalisation/Pre-Processing and C4_Confidential Computing/Data
Sovereignty, which provide the essential backbone for secure execution and data
integrity.

* Q2 - Initial Processing/Analytics: Implementation of intermediate functions for
data transformation and classification, notably C5_NATO Classification
Processing, C10_Vehicle Health Analytics, C12_Sensor Fusion and feedback
handling via C22_Analyst Feedback Loop.

* Q3 - Applied Health/Situational Prediction: Integration of advanced mission
health features such as C11_Predictive Maintenance, C13_Health-Based Task
Prioritisation,C14_Tactical Vehicle Survivability and C15_Occupancy and
Crew State, enabling data-driven mission readiness insights.

42

3.1 OVERVIEW AND VIEWPOINTS

* Q4 - Visual/Tactical Integration: Final integration of high-level situational aware-
ness and simulation layers, including C16_Tactical Situational Awareness,
C20_Streaming Imagery Ingestion, C21_Weather Pattern Recognition,
C23_Tactical Situational Awareness and C24_Mission Impact Prediction
via Simulation.

The roadmap reflects implementation feasibility and architectural dependency
constraints. Each phase builds incrementally upon the prior, reducing integration risk
and ensuring capability coherence across domains.

The phased implementation approach is consistent with NAFv4 methodology. It
supports traceability between concept-level capability development and technical instan-
tiation in Logical and Service Specification Viewpoints, thereby facilitating stakeholder
alignment and milestone validation.

3.1.5 Application

Building on the previously defined capability roadmap (cf. NCV-3), the following
diagram illustrates the phased evolution of foundational service functions in alignment
with capability clusters and implementation phases of the OmniAware platform.

Design Translation and Architectural Consolidation. The application view builds
on the previously defined capability roadmap (cf. NCV-3) and systematically transfers
each capability into a corresponding set of service functions and orchestration patterns.
These services are explicitly modelled in NSOV-3 and NSOV-6, reflecting not only the
implementation maturity but also the modularisation logic of the OmniAware platform.

Rather than emerging from conventional top-down decomposition, all mapped
service functions originate from structured artefacts—specifically from BPMN process
models and PR/FAQ documentation aligned with the PHM and CIVS mission do-
mains [75], [77], [79]. Each function thus represents a concrete instantiation of previously
defined capabilities, ensuring operational fidelity and traceability to stakeholder needs
and tactical objectives.

This transition from abstract capabilities to executable service logic follows a layered
modelling approach: foundational general services (e.g. SF1-SF8) form the platform core
for security and data integrity; PHM services (SF10-SF19) reflect health-state analytics
and mission readiness logic; CIVS services (SF20-SF27) support sensor fusion, visual
pattern recognition and simulation-based planning. Their temporal allocation across
capability stages Q1-Q4 (cf. NCV-3) is preserved and reflected in their grouping and
orchestration semantics in NSOV-6.

This design step consolidates architectural decisions by mapping high-level capabil-
ity models to deployable and modular service layers, compliant with NAFv4 viewpoints
and ready for downstream orchestration and policy control implementation.

Service Function Decomposition and Service Structuring. The functional design of
the OmniAware platform is grounded in a structured decomposition of services and their
respective service functions that realise the capability demands defined in Section 3.1.4.
Rather than aiming for exhaustive microservice design, this decomposition aims to
provide a logically coherent breakdown of service functions grouped by capability
cluster and mission-specific requirements.

43

ARCHITECTURE AND DESIGN

The modelling approach follows NAFv4-compliant views, notably NSOV-6, where
service functions are linked to applications via realisation relationships. Although
these relationships are formalised using realises connectors, they serve primarily as
analytical artefacts to express design intent rather than enforce concrete implementation
blueprints.

This abstraction allows early-stage modelling without locking down the full deploy-
ment stack. In particular, service functions were derived by analysing the interaction
and information flows embedded in the BPMN models and cross-validated against
capability requirements from NCV-2. For example, functions such as Sovereign Policy
Enforcement or Secure Storage and Access Layer support the implementation of
C4_Confidential Computing/Data Sovereignty, while others such as Confidential
Data Ingestion or NATO Classification Processing contribute to €5 and C10 in the
PHM context.

Function groupings were additionally guided by early cloud architecture constraints:
the PoC deliberately excluded orchestration platforms like Kubernetes in favour of
simplified stack deployments to reduce system complexity in Q1/Q2. This constraint
had a direct impact on the grouping of services and design of functional boundaries.
Consequently, the number of deployed functions was limited and collocated in EC2-based
trust zones (e.g. SEV-SNP or Nitro Enclaves), mapped closely to infrastructure-as-code
templates and security policies.

Through this structuring, the design retains the ability to reason across abstraction
levels —from BPMN interaction flows to capability fulfilment and service-level reali-
sation — without prematurely locking into operational dependencies or deployment
frameworks.

SF1_Confiden (3 SF2_Confiden () SF3_Secure [
tial Data tial Storage and
Ingestion Computing Access Layer

SF4_Multi- (3 SFS_NATO () SF6_Audit/Pr ()
Level Security Classification ovenance
APl Gateway Processin 9 Service

SF7_Sovereig (3 SF8_Federate ()
Policy d identity
eeeeeee t Trust Brok
10_PHM Baz0cvs B
SF10_Confide (3 SF11_Health (3 SF12_Fault [SF19_Data [SF20_Streami [SF21_Sensor A SF22_Weathe ()
ntial Analytics Detection/Ro Object ng Imagery Fusion/Spatia r Pattern
Telemetry Orchestration ot Cause Storage Ingestion | Correlation Recognition
SF13_Insider (3 SF14_Vehicle (3 SF15_Teleme [SF23_Analyst [SF24_Contex (3 SF25_Tactical (3
Presence Survivability ry Feedback tual Image
Monitoring Estimation Provenance Loop Classification Overlay
SF16_Tactical (3 SF17_Tactical (3 SF18_Mission A SF26_Mission (3 SF27_Edge- ()
Health Travel Time Data -Based Compatible
Visualisation Estimator Classifier Tagging Inference

Figure 3.3: NSOV-3: OmniAware Service Functions

As shown in Figure 3.3, the NSOV-3 models all Service Functions of the OmniAware
Core System, grouped according to their functional domain — General, PHM and CIVS.
Each service function represents a discrete, independently deployable microservice or
execution component that delivers mission-critical functionality aligned with NAFv4
service viewpoints.

e General Functions (SF1-SF8): These include foundational services such as
SF1_Confidential Data Ingestion, SF2_Confidential Computing, SF3_Secure
Storage and Access Layer, SF4_Multi-Level Security API Gateway, SF5_NATO

44

3.1 OVERVIEW AND VIEWPOINTS

Classification Processing, SF6_Audit/Governance Service, SF7_Sovereign
Policy Enforcement and SF8_Federated Identity Trust Broker.They form the
baseline for secure data handling, compliance, identity federation and sovereign
execution.

¢ PHM Functions (SF10-SF19): These functions realise the platform’s predictive
health monitoring and analytics capabilities. They include SF10_Confidential
Telemetry, SF11_Health Analytics Orchestration, SF12_Fault Detection/
Root Cause,SF13_Insider Presence Monitoring, SF14_Vehicle Survivability
Estimation, SF15_Telemetry Provenance,SF16_Tactical Health Visualisation,
SF17_Tactical Travel Time Estimator, SF18_Mission Data Classifier and
SF19_Data Object Storage Governance.

e CIVS Functions (SF20-SF27): These functions enable situational awareness and
mission analytics. The services include SF20_Streaming Imagery Ingestion,
SF21_Sensor Fusion/Spatial Correlation, SF22_Weather Pattern
Recognition, SF23_Analyst Feedback Loop, SF24_Contextual Classification,
SF25_Tactical Image Overlay, SF26_Mission-Based Tagging and SF27_Edge-
Compatible Inference.

Each service function is directly realisable through containerised workloads and
is mapped to one or more capabilities as described in the NSOV-4 and NCV-3 Views.
Service Functions are intentionally modelled at a granular level to allow fine-grained
lifecycle management, scalable deployment and functional reuse across application
domains.

For implementation-level design, this implies that an additional application layer
would typically encapsulate service logic and interface definitions. In this model, how-
ever, the service functions are considered abstracted enough to represent these semantics
directly. This simplification does not compromise the analytical value of the view but
should be kept in mind when interpreting architectural compliance or extending the
model in future work.

Building on the functional decomposition outlined in NSOV-3, the NSOV-6 view
focuses on the structural composition and internal dependencies of services within the
OmniAware platform. It visualises orchestrated relationships, service reuse patterns and
logical groupings relevant for deployment, modularity and policy enforcement across
mission domains.

As shown in Figure 3.4, the services are logically grouped and composed into three
orchestration clusters:

¢ Secure Data Entry and Trust Enforcement (S1-S3, S5-S7): This grouping governs
the secure ingestion, metadata management and enforcement of security policies
such as encryption, RBAC and attestation. These services are reused across mission
workflows and form the backbone of data lifecycle protection.

* Orchestrated Backend Services (S4, S8-S9): This cluster enables auditability, fed-
erated identity mediation and compliance tagging. Services here are typically used
by or depended on by policy enforcement and mission analytics logic.

¢ Frontend-Orchestrated Workflows (S10-S13, S20-S23): These services realise
higher-level application flows, such as notification, dashboard rendering or fusion
pipelines. They compose their logic from several backend capabilities and often
initiate secure data interactions.

45

ARCHITECTURE AND DESIGN

00_General

S1_Ingestion O $2_Secure O 53_Metadata O s4_Audit O S6_RBAC O 57_Remote O S8_SPRE O 59_Vault Key O
Service Storage Management Logging Attestation Verifier Controller
AN AN AN Ay
SF19 Data [SF6_Audit/Pr (3] SF4_Mulfi- | SF5_NATO (3 SF18_Mission (3
Object ovenance Level Secri Classification
Storage Service API Gatewfay| Processing Classifier
SF1_Confiden (3 SF3_Secure (Y SF8_Federatd ()
tial Data ... Storage and d Identity
Ingestion ‘Access Layer Trust Broker|
SF7_Sovereig (
n Policy
Enforcement
[10_PHM 20_CIVS,
|
|
| 510_Secure O SILML O s12.Data O 513_Notifica O 520_Secure O s521_Image O s22.Data O $23_Notifica ©
| Frontend inference Fusion tion Frontend/Da Processing Fusion tion
| shboard Pipeline]
3 s A zs 1 = IS] ’ :
| i H H :
SF10_Confide () | SF14_Vehicle SF13_Insider (SF16_Tactical () SF23_Analyst () $F20_Streami SF26_Mission (3 SF27_Edge- (N
ntial i Wabili Presence Heald Feedback ing Imagery | -Base Compatible
Telemetry i Estimation Monitoring Visualisation Loop Ingestion Tagging Inference
i st17_actical i i
1 Fravel Time SF21_Senspr () SF22_Weathe ()
i iEstiator Fusion/Spafia rPattern
i I Correlatign ecognition
SF11_Health (3 i sF12_Fault SF15_Teleme ()
Analytics ..}/ Detection/Ro y

Orchestration ot Cause Provenance

SF24_Contex (SF25_Tactical (3
tual Image

al
Classification Overlay

Figure 3.4: NSOV-6: OmniAware Service Structure

This view enables architects to reason about orchestration paths, service chaining
and security integration in a modular and reusable way. It forms the basis for fault-
tolerant, policy-bound and scalable mission deployments.

Although the modelling process broadly follows the NAFv4 viewpoint methodology,
the creation of NLV-4 (Information Exchange Requirements) models deliberately were
omitted. This decision is motivated by the focus on security-critical deployment and
interface views, which were prioritised over operational information flow descriptions
due to project constraints and the absence of stable consumer-side communication
semantics at this stage.

3.1.6 Technology

As illustrated in Figure 3.5, the NSV-1 maps OmniAware’s modular services to their
concrete execution environments, grouped by trust domains and hardware-backed
runtime protections. The deployment model differentiates between general-purpose
backend services hosted in secure cloud/fog infrastructures and mission-specific services
operating at the tactical edge.

General Services — such as S1_Ingestion Service, S2_Secure Storage,
S3_Metadata Management, S4_Audit Logging and S6_RBAC — are hosted exclusively
within confidential computing infrastructure using AMD SEV-SNP-backed virtual ma-
chines. These VMs each instantiate a Kata Confidential Runtime, enforcing memory
encryption and runtime isolation via attested container boundaries. Deployed Kuber-
netes pods encapsulate each service and are chained through a policy-controlled key
release mechanism operated by the Policy Proxy (30-2_Policy Proxy).

PHM and CIVS Services — namely $10-513 (PHM) and $20-523 (CIVS) — are
realised at the tactical edge on embedded devices (Jetson AGX Orin) equipped with
OP-TEE. Due to the architectural limitations of TrustZone, this only provides lightweight
enclave protection without full runtime confidentiality or remote attestation. The services
are grouped into mission-specific execution cores (Trusted Execution Core (OP-TEE)) and

46

3.1 OVERVIEW AND VIEWPOINTS

executed in isolated Edge Pods. Examples include health telemetry analytics, secure Ul
rendering, image pipelines and notification services. Each node is tightly coupled to the
mission domain it supports, either PHM or CIVS and deployed on mobile edge nodes
(e.g. vehicle-based compute).

00_General 21 AWS [y 20_AWS EU [y B
Sovereign Central
S1_ingestion O 52_Secure O $3_Metadata O s4_Audit O $5_Encryptio O S6_RBAC O 57_Remote O Sl (D
Service Storage Management Logging n Attestation el L [
Field Nod loudBw
o o o o o o o bt i
S8_SPIRE O 59_Vault Key O
Verifier Controller
A A
30-3.AMD 2 30-4 AMD (] 30-5.AMD 2 30-6 AMD 2 30-7AMD (1 30-2_Policy O 30-1AMD 2 30-8 AMD 2 30-9 AMD (]
SEV-SNP Host SEV-SNP Host SEV-SNP Host SEV-SNP Host SEV-SNP Host Proxy SEV-SNP Host SEV-SNP Host SEV-SNP Host
M M M M M M M M
30-3-1 Kata O 30-4-1 Kata O 30-5-1 Kata O 30-6-1 Kata O 30-7-1 Kata O 30-1-1 Kata 30-8-1 Kata O 30-9-1 Kata O
Confidential Confidential Confidential Confidential Confidential Confidential Confidential Confidential
Runtime Runtime Runtime Runtime Runtime Runtime Runtime Runtime
30-3-1- 30-4-1- (7 30-5-1- (J 30-6-1- (7 30-7-1- (7 30-1-1- (7 30-8-1- (7 30-9-1- (J
1_Kubernet 1_Kubernet 1_Kubernet 1_Kubernet 1_Kubernet 1_Kubernet 1_Kubernet 1_Kubernet
es Pod es Pod es Pod es Pod es Pod es Pod es Pod es Pod
[10_pHM O CEEEEEE e e =
| /
26_PHM_Vehicle (EDGE) (P 27_CIVS_Vehicle (EDGE) L
510_Secure O SIML O s12 pata O 513_Notifica O i 520_Secure O $21_Image O 522 Data O 523 Notifica O
Frontend inference Fusion tion Frontend/Da Processing Fusion tion
] shboard Pipeline
S o A A L& s 3 3
1 i i i R R S
ik a 31- a 1o 32- a 32- a
1_PHM_NVIDIA 2_PHM_NVIDIA 3_PHM_NVIDIA 1_CIVS_NVIDIA 2_CIVS_NVIDIA
Jetson AGX Orin Jetson AGX Orin Jetsor AGX Orin Jetson AGX Orin Jetson AGX Orin
31-i- O 31i2- O 3i-3- O 32i1- O 32i2-
1_Trusted 1_Trasted 1_Trusted 1_Trasted 1_Trasted
Executioh Core Execution Core Execution Core Executibn Core 32-3 Notifier O | Executipn Core 32-4 Notifier §
(OP-TEE) (OP-TEE) (OP-TEE) (OP-TEE) Service (OP-TEE) Service
31-1-1- (7 31-2-1- (] 313-1- (] 32-1-1- 32-2-1-
1_Edge Pod 1_Edge Pod 1_Edge Pod 1_Edge Pod 1_Edge Pod
31-4_Health O
Visualiser

Figure 3.5: NSV-1: OmniAware System Deployment

The deployment model presented in NSV-1 avoids consolidating multiple services
into shared compute units. Instead, each service is mapped to an isolated execution
environment (e.g. dedicated AWS Lambda function or EC2 instance), ensuring strict
separation of concerns, reduced blast radius and alignment with zero-trust security
principles.

This architecture reflects the principle of mission-informed deployment: while
general-purpose backend workloads are centralised in sovereign cloud environments to
benefit from cryptographic attestation and trusted orchestration, latency-critical domain
logic is pushed towards the edge, sacrificing some assurance levels for responsiveness.
The deployment ensures:

¢ Confidentiality: All sensitive control plane services run in memory-encrypted
SEV-SNP VMs with attested Kata runtimes.

* Modularity: Each functional unit is encapsulated as a service in an isolated pod,
aligned with its hardware trust level.

¢ Trust Differentiation: Mission-critical logic executes in OP-TEE-secured Jetson
nodes, modelled as Trusted Execution Cores under degraded but locally trusted
conditions.

* Purpose: Demonstrates deployment alignment of OmniAware services across multi-
tier execution zones with differentiated trust.

47

ARCHITECTURE AND DESIGN

* Scope: Shows the runtime mapping of service components to specific enclave
types (SEV-SNP, OP-TEE) and container runtimes (Kata/Edge).

* Value: Enables traceable reasoning about cloud-to-edge service placement, runtime
assurance and operational resilience under sovereign and coalition constraints.

Edge Runtime Architectures. Several alternative edge execution models—including
Intel SGX enclaves, gVisor or Firecracker microVMs—were considered during the
architectural review. However, these approaches were excluded due to limited attes-
tation flexibility, lack of interoperability across trust domains or the absence of inte-
grated remote attestation workflows. In contrast, the use of OP-TEE-enabled Jetson
AGX Orin devices offered lightweight, deterministic runtime environments with support
for mission-specific embedded inference pipelines under degraded trust assumptions.

Kata Confidential Runtime. The deployment of backend control-plane services on
SEV-SNP-enabled virtual machines leverages the Kata Confidential Runtime to combine
hardware-backed isolation with cloud-native container orchestration. Unlike static VMs
or lightweight sandboxing solutions (e.g. gVisor, Firecracker), Kata provides a confiden-
tial micro-VM abstraction layer fully integrated with the Kubernetes Container Runtime
Interface (CRI). This allows each service pod to run in an individually attested enclave
environment while maintaining compatibility with standard Open Container Initiative
(OCI)-compliant tooling.

The selection of Kata was informed by both architectural pragmatism and mission-
grade feasibility: it enabled seamless integration into existing Vault-based encryption
workflows, supported policy-bound key release and provided a reproducible deployment
path within the PoC scope. While alternatives such as Kubernetes-native confidential
container runtimes (e.g. the Confidential Containers project of the CNCF) offer promising
long-term capabilities, they remain at Incubating maturity and lack full support for
attestation, key provisioning and edge portability [47].

Accordingly, Kata was selected not due to formal endorsement by NAFv4 or NIST,
but based on its practical integration maturity across heterogeneous sovereign environ-
ments. The resulting architecture balances strong isolation guarantees with the need for
DevSecOps-compatible container lifecycles and deterministic attestation control, align-
ing with the operational and compliance objectives defined for confidential backend
services.

Kubernetes-native Confidential Containers. While Kubernetes-native confidential
computing runtimes —- such as confidential computing-enabled deployments using SEV-
SNP —- offer promising long-term potential, their integration was deliberately excluded
from this PoC. This decision reflects current maturity and tooling limitations, especially
regarding remote attestation support, control-plane compatibility with Vault and the
orchestration overhead associated with Kubernetes-managed runtimes in constrained
environments. The use of Kata instead prioritised reproducibility, simplified attestation
integration and full compatibility with existing OCI- and Kubernetes-based workflows.

Technology Decisions and Trade-Offs. The technology layer was structured around
mission-informed trust domains. While the use of SEV-SNP-enabled virtual machines
with Kata Confidential Runtime provided strong isolation and attestation guarantees for
cloud-hosted backend workloads, such capabilities were not available on edge-class
hardware. As a result, OP-TEE-enabled devices such as Jetson AGX Orin were employed

48

3.1 OVERVIEW AND VIEWPOINTS

at the tactical edge, accepting trade-offs in terms of runtime confidentiality and remote
attestation. Furthermore, Kubernetes-native service meshes — while considered —
were consciously excluded in favour of static, file-based service bindings to minimise
system complexity and ensure deterministic service orchestration under constrained
network conditions. These decisions reflect a deliberate balance between trust anchoring,
architectural expressiveness and deployment feasibility in defence-grade environments.

The architectural overview in this section has deliberately focused on a selected and
traceable subset of NAFv4-compliant views: NCV-2 (Capability Dependencies), NCV-3
(Capability Roadmap), NS0V-3 (Service Functions), NSOV-6 (Service Orchestration Logic)
and NSV-1 (System Deployment). These views constitute the core architectural elements
required to demonstrate semantic continuity from strategic objectives through service
realisation to physical deployment environments.

Rather than exhaustively modelling all NAFv4 artefacts, the selected views were
prioritised based on their architectural expressiveness, methodological necessity and
feasibility within the scope of a time-bounded PoC. The resulting model enables robust
traceability between high-level mission needs and operational capabilities, while sup-
porting early design validation of interoperable, sovereign and secure defence systems.

It must be noted that the presented architectural artefacts reflect a first iteration
and are subject to refinement. As the platform matures and stakeholder inputs evolve,
the capability catalogue, service structure and interface logic will likely require further
alignment and expansion. Nevertheless, the current model offers a structured and
methodologically sound foundation for advancing to the logical design of platform
services.

The following section (3.2) builds on this foundation by elaborating the architectural
implications of cloud-native service deployment across sovereign cloud, fog and edge
domains — highlighting how the architectural principles established here are practically
operationalised in hybrid execution environments.

In summary, this chapter has laid the architectural foundation of the OmniAware
platform by methodically selecting and modelling a strategically relevant subset of
the NAFv4 viewpoint catalogue. Rather than pursuing exhaustive coverage, the mod-
elling scope was deliberately constrained to enable traceable capability decomposition,
service orchestration and sovereign system deployment within the boundaries of a
time-constrained PoC.

The resulting architecture offers a semantically coherent and operationally viable
model that links high-level strategic objectives to deployable infrastructure artefacts.
These models provide the structural basis for implementation and compliance validation
across diverse execution environments.

The next chapter shifts perspective from architectural abstraction to runtime envi-
ronments. It examines how distributed computing paradigms — spanning sovereign
cloud, fog and edge — bring the defined services to life, ensuring secure, scalable and
mission-resilient operation in coalition-based deployments.

49

ARCHITECTURE AND DESIGN

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

Summary: Chapter 3.2 operationalised the architectural abstractions from Chapter
3.1 by deploying them across distinct cloud, edge and high-performance computing
environments. The respective AWS-based reference architectures illustrated how core
capabilities—including PHM and CIVS — are realised in practice. A serverless-first
approach was adopted to reduce system complexity, increase elasticity and ensure secure
telemetry processing. Moreover, deployment-specific trade-offs such as audit account
isolation, minimal latency at the tactical edge and sovereign cloud seperation were
elaborated to accommodate the varying mission demands across coalition-based and
national operations.

3.2.1 Deployment Methodology and Realisation Approach

Building on the capability- and service-centric foundations established in Section 3.1, this
section advances into the deployment and infrastructure perspective of the OmniAware
architecture. While the previous chapter addressed what the platform does, this section
focuses on how and where it is executed.

To capture this shift, a refined subset of NAFv4 viewpoints was selected:

¢ NSV-1 (System Deployment) — depicts the runtime environment of services,
distributed across cloud, fog and edge tiers.

¢ NPV-1 (Architecture Roadmap) and NPV-2 (Lines of Development) — structure
the deployment logic across sovereign trust zones, physical cluster types and
workload evolution paths.

e NAV-1 (Standards and Reference Architecture) — documents the architectural
principles, deployment primitives and system classifications used in the PoC.

In line with the design scope of this thesis, the NSV-5 viewpoint was intention-
ally omitted. While NSV-5 typically addresses system interactions and orchestration
sequences, the platform’s event-driven, loosely coupled design renders a full NSV-5
modelling unnecessary at this stage. Interactions are instead reflected in the architectural
layering and flow logic of the deployment model.

The following sections integrate a detailed breakdown of the system deployment
logic, guided by two visual reference architectures: one for PHM and one for CIVS. These
artefacts were collaboratively developed with a Lead Cloud Architect, who was primarily
responsible for the structural and compositional design of the overall cloud deployment.
Selected architectural decisions were contributed and security-related components,
including encryption, key management and attestation flows were integrated. The
reference architectures were used to validate the technical feasibility and component
interplay across AWS Fargate, EC2-based enclaves and edge-deployed Lambda services.
They represent the operationalisation of the previously defined service and capability
landscape in a federated, secure and mission-resilient execution context.

As part of the Strategic Collaboration Agreement (SCA) between Capgemini and
Amazon Web Services (AWS), all architectural designs and implementation artefacts are
required to adhere to the principles of the AWS Well-Architected Framework (WAF).
This framework serves as a best-practice guideline across five key pillars: operational
excellence, security, reliability, performance efficiency and cost optimisation [44].

50

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

In accordance with the milestone plan defined for the MVP development phase,
a formal Well-Architected Review was conducted to validate the alignment of the
OmniAware system architecture with AWS expectations. As a result, the detailed PHM
and CIVS reference architectures were not only modelled for internal validation and
communication purposes, but also to fulfil compliance and auditability requirements
within the WAF-based project governance structure.

To support this process, the architectural diagrams were implemented using Draw.io
templates derived from the AWS Architecture Icons and tailored to reflect the services,
boundaries and responsibilities relevant to defence-grade deployments. Each architec-
ture is organised to illustrate the logical separation of service domains (e.g. ingestion,
analytics, datalake, consumer, audit) while embedding core WAF-compliant practices
such as encryption at rest and in transit, Identity and Access Management (IAM) scoping,
audit log retention and service-level decoupling.

Service Selection Transparency. Each AWS service included in the architecture fulfils
a distinct mission-related role. CloudTrail and CloudWatch Logs provide event-level ob-
servability, while Macie supports anomaly detection on telemetry metadata. SageMaker
enables enclave-compatible model inference and Quicksight supports mission-state
visualisation. All services were selected based on their ability to embed auditability,
scalability and attested processing into the operational workflow of the PHM and CIVS
scenarios.

This approach ensured that both use-case specific implementations (PHM and CIVS)
were not only operationally sound but also WAF-ready — allowing them to pass the
initial milestone review criteria and qualify for further enablement support through the
Field Ready Kit and Foundational Technical Review (FTR) preparation.

To complement the formal architecture views, the deployment model is supported
by two reference architectures that were collaboratively developed during the project.
These diagrams represent the practical translation of capability and service design into
technical artefacts, including security primitives, enclave deployment topologies and
federated service chains.

3.2.2 Contribution and Project-Specific Realisation

This section presents the deployment-centric complement to the modelling artefacts
discussed in Chapter 3.1. It reflects the implementation-oriented work, including the
derivation of service deployment blueprints, operational trust zones and architecture-
driven infrastructure abstractions for the OmniAware platform. The technical realisation
is grounded in previously modelled capabilities and service flows, bridging architectural
design with runtime instantiation.

The contribution is structured around two main pillars:

Infrastructure Realisation. This includes the development and black box abstraction of
AWS-based reference architectures for the PHM and CIVS scenarios, structured around
NAFv4-compliant views such as NSV-1, NSV-4a and NPV-3. The reference architectures
reflect trust-segmented infrastructure domains, identity-enforced runtime boundaries
and confidential computing patterns. Each artefact was manually derived and visualised
using draw.io templates aligned with the author’s modelling decisions from 3.1, ensuring
traceability from logical capabilities to operational infrastructure.

51

ARCHITECTURE AND DESIGN

Security Blueprinting and Author Contribution. In addition to structural deployment
views, this thesis contributes reference implementations for secure service orchestration
and workload protection. These include enclave-enabled runtime clusters (based on SEV-
SNP and OP-TEE), policy-based secret distribution (via Vault and KMS), as well as WAF-
aligned design patterns for IAM scoping, audit integration and network zoning. These
elements were implemented and documented by the author and serve as deployable
validation artefacts within the PoC, supporting auditability, security evaluation and
compliance demonstration.

3.2.3 AWS Well-Architected Framework - Reference Architecture

The realisation architectures presented in this section are grounded in the capability
decomposition modelled in NSV-1 and NPV-2, ensuring architectural consistency between
abstract capability definitions and concrete infrastructure deployments. Each depicted
service in the PHM and CIVS reference views corresponds to a mission-specific capability
cluster — such as C10_Vehicle Analytics or C4_Confidential Computing — and
reflects the validated implementation path through dedicated AWS-native components.
The mapping was derived to preserve service modularity, data flow integrity and
zero-trust execution boundaries as formalised in the respective viewpoint models. This
section introduces the reference architecture developed in accordance with the AWS Well-
Architected Framework (WAF) and aligned with security, compliance and performance
expectations defined in the Strategic Collaboration Agreement (SCA) between Capgemini
and AWS. It serves as the conceptual backbone for the PHM and CIVS deployment
views and contextualises their mapping to security-aligned infrastructure patterns.

The reference architecture reflects the implementation of WAF principles across the
five pillars — operational excellence, security, reliability, performance efficiency and cost
optimisation. As such, it represents a validated design scaffold that underpinned both
the initial WAF Review and the development of deployable Landing Zone artefacts for
the PoC.

High-Level Architecture Modelling. The architecture provides an abstracted black
box representation of OmniAware’s core service domains. It outlines the separation
of concerns across ingestion, analytics, API exposure, audit and management, while
encapsulating key functional building blocks. Each architectural block corresponds to a
logical service grouping defined in earlier NSOV-3 and NSOV-6 models.

Account Separation and Trust Segmentation. The reference model includes dedicated
AWS accounts for ingestion, datalake, audit and security, aligned with organisational
and runtime trust boundaries. This structure reflects NPV-3 requirements for enforced
trust zones and maps to deployable blueprints supporting role isolation, encrypted data
transfer and minimal exposure of high-sensitivity artefacts.

Security-by-Design Integration. The model embeds core WAF-aligned security primi-
tives, including IAM scoping, secure key handling via KMS and audit tagging. Sensitive
paths are constrained through attested components such as enclave-enabled compute
nodes and policy-controlled boundary enforcement. These principles directly influence
the Landing Zone definitions described in Sections 3.2.4 and 3.2.5.

The high-level reference architecture provides an abstracted view of core OmniAware
deployment principles. It emphasises the separation of concerns across ingestion, storage,

52

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

8@ Ingest

8@ Data lake & processing

(Gen)Al services

fetch
context data
- APl
tgosee L
- A fetch . store O > L 8 %
|:§:| ” \ =Y EI event based r\)_mela caw > N m— eten auery 8
Containerized] Custcm compute DB udprs
- ready solution APIGW Ingest Pipeline R;:)vrga‘ea (use cases) meta data /
for ingest 9 storage
Store classified daca retcn
l (Gen)Al service|
CE] \& f;, %c
: central alerting
data lake
gg Audit & Management channel for alerting
0
A B B A
. M E
5
alerting
Organizsations GuardDuty Security

Figure 3.6: OmniAware Deployment Principles - High-Level Reference
Architecture [80]

processing, API exposure and alerting layers. Additionally, it highlights security-by-
design elements such as dedicated accounts for audit and key management services.
This abstraction serves as a conceptual introduction to the PHM and CIVS reference
architectures and contextualises their cloud-native service orchestration patterns.

10T devices
1Sensors, vehicies, drones,
A mobile contral units, etc

5, 2lowngfor e grained
(g access govemance

0y, Role access to datalake accoun,
‘)—ﬁa B, image evaluation

Ingest Account
8@

H Military Vehicle Fleet
'

' . Telemetry (GPS, temp,

Data Ingestion Layer

Data Processing and Storage Layer
encrypted transfer

processing)
+ Bedrook LLM (plausibility)

encrypted transf

Mission Access Layer
fer

pressure) - APIGW (REST) + S8 data lake (encrypted rest) « QuickSight dashboards
« Audio streams encrypied transfer « Lambda functions (VPC) stream parfitioned objects, « Lambda functions (VPC) logs and mefric « Natural \gahguage queries
(operators) > « Kinesis Firehose + DynamoDB metadata - API(REST, classifiet)
+ Realtime vehicie status « Secure Network Gateway + EveniBridge orchestration « NATO access controls
(WAF protection, mTLS + SNS/SQS messaging
authentication, Network + Step Function workflows
Firewall)
AVML Processing and Analytics
encrypted transfer Context Data Sources 9 Iyti
—_— €————F— . Weatherstations « SageMaker (anomaly detection)
eeseey « Traffic systems + Athena/Glue (data catalog) encrypted transfer
+ Terrain databases penSearch (natural language logs and metrics

+ Transeribe (audio analysis)
+ NATO classification logic

gl

Security

il

Monitoring and Governance

Audit Account Alerting and Response System
- Key Management (CloudHSM, KMS)
« IAM central policies

« Certificate Manager (AGM)

» Secret Manager

- Cross-account roles

+ CloudTrall audt logs
« Security Hub compliance

+ Alert Manager Lambda

+ GuardDuty threat detection
+ Config rules enforcement
» CloudWatch dashboards

+ Multichannel alerting
+ E-Mall/SNS notifications
+ Cost monitoring

+ SLA-based escalation
+ Event archive (S3)

+ Compliance reporting

Figure 3.7: PHM - High-Level Overview of the Reference Architecture

The PHM reference architecture models a telemetry-based edge-cloud pipeline that
enables RT health assessment of tactical platforms. It integrates attested compute nodes,
enclave-secured workloads and secure message ingestion. The architecture includes
enclave runtimes using SEV-SNP and OP-TEE technologies, supporting trusted container
execution and confidential telemetry analytics.

The CIVS reference architecture illustrates a secure image ingestion and validation

53

ARCHITECTURE AND DESIGN

............... \
1loT devices ' Ingest Account . Datalake account Cansumer account
! Sensors, vehicles, drones, 1 allowing for fine grained & Pole access to datalake account,
} mobile control nits, et ' f}@ ’iﬁd access govemance "% B image evaluaton
| Visual Data Sources '
'
HE Car:ne‘va-equipped ! Image Ingestion Layer Image Processing and Validation Layer i Tactical Intelligence Layer
' vehicles - APIGW (REST) encrypied transfer + S3data lake (encrypted rest) €NCTypled transfer QuickSight dashboard
' . ght dashboards
! - Floldimagery (orones) | encrypted transfer - Lambda functions (VPC) stream parfitioned objects, + Lambda functions (VPC) logs and metric: « Natural language queries
H T e ure cameras > « Kinesis Firehose + DynamoDB metadata « API (REST, classified)
i * Real-time Image | « Secure Network Gateway + EventBridge orchestration « NATO access controls
' streams ! (WAF protection, mTLS + SNS/SQS messaging
1 Weather Context Sources i authentication, Network + Step Function workflows
' N 1 Firewall)
1+ Weather stations H
: « Environmental sensors Weather- and Metadata Sources
1 MetookgealAPle ! encrypted transfer
' ' + NATO meta provider
il | « GPS/time-stamped image encrypted transfer
' metadata
' logs and metrics,
H ﬁ ' - Wealher station feeds Image il L
! - Pipelines
'
H ' « Recognition (object detection)
PO Py ; Recogon ot st
H ' « Athena/Glue (data catalog)
' | « OpenSearch (natural language
H (_‘\: ! processing)
' 1 + Bedrock LLM (plausibility)
H Ba « EXIF metadata extraction
H ' + NATO classification logic
} [0
'
- :
.
d| AuditAccount security Monitoring and Governance Alerting and Response System
« Key Management (CloudHSM, KMS) + CloudTrail audit logs « Multichannel alerting
« 1AM central policies + Security Hub compliance « E-MailISNS notifications
« Certiicate Manager (ACM) + Alert Manager Lambda « Cost monitoring
- Secret Manager + GuaraDuty threat detection - SLA-based escalation
« Cross-account roles « Config rules enforcement « Event archive (S3)

« Compliance reporting

Figure 3.8: CIVS - High-Level Overview of the Reference Architecture

flow that includes confidential classification, pattern recognition and cross-validation
against external authoritative sources. This pipeline enables verifiable mission context
inference under degraded trust conditions.

Given its broader scope and technical maturity, this section begins with the Platform
Health Monitoring (PHM) use case. Compared to other scenarios, PHM encompasses
a more complete set of architectural components — from ingestion and storage to
analytics and auditability — and therefore serves as a suitable example for illustrating
the reference architecture developed as part of the OmniAware platform. The selected
architectural approach reflects the principles of account separation, secure service or-
chestration and scalable data management within a defence cloud context. The PHM
scenario thus forms the primary basis for the detailed architectural walkthrough. In
contrast, the Contextual Image Verification System (CIVS) is introduced subsequently in
abbreviated form to outline its specific adjustments and differences relative to the same
architectural framework.

The PHM system is structured into five principal AWS accounts, each mapped to a
functional architectural layer:

e PHM Ingest Account: Responsible for the secure collection and preprocessing of
telemetry data streams from operational platforms. It employs edge-integrated
data acquisition agents and secure ingestion endpoints, supporting both batch and
streaming paradigms.

¢ PHM Data Lake Account: Provides scalable, schema-flexible storage for structured
and unstructured data, leveraging services such as Amazon S3, Glue Catalogues
and Lake Formation. It supports versioning, tagging and data lineage tracking to
ensure data governance and auditability.

¢ PHM Consumer Account: Hosts mission analytics pipelines, anomaly detection
services and dashboarding interfaces. It integrates with AWS analytics services
such as Athena, SageMaker and QuickSight and enables policy-driven access via
IAM and RBAC.

54

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

¢ PHM Audit Account: Implements independent security monitoring and opera-
tional logging via services such as CloudTrail, AWS Config and Security Hub.
It facilitates continuous compliance validation and decoupled audit operations
across accounts.

¢ Shared Services Account: Provides core infrastructure services including VPC
peering, DNS resolution, central logging sinks and shared data models. It also acts
as a control plane for cross-account orchestration and backup strategies.

Each account is configured with dedicated Service Control Policies (SCPs) and
tightly scoped IAM roles, ensuring that only explicitly defined cross-account interac-
tions are possible. This design principle enables zero-trust isolation while preserving
operational collaboration across the PHM platform lifecycle. The architectural model
aligns with the principles of minimal blast radius, scalable domain separation and
policy-driven service interconnection.

Differentiation from CIVS: The reference architecture for the Contextual Image
Verification System (CIVS) reuses the general pattern of account separation but adapts
the specific services and data flows to meet image processing requirements. Unlike PHM,
which focuses on structured sensor telemetry and time-series analytics, CIVS handles
media-rich, often classified data with higher sensitivity. It introduces hardened inges-
tion pipelines for tactical imagery, image validation workflows and cross-referencing
capabilities with external authoritative data providers. Additional compliance controls
are applied, such as automated image classification and redaction pipelines, to satisfy
mission-specific security constraints.

The Ingest Account serves as the primary entry point for telemetry and contextual
data streams into the OmniAware platform. It hosts the secure intake of operational
sensor data from vehicles, UAVs and edge platforms, while enabling data enrichment
via publicly available contextual sources (e.g. weather services). Its architecture ensures
that data is securely transmitted, filtered and pre-processed before being forwarded to
the central processing layers.

As illustrated in Figure 3.9, the ingestion pipeline is initiated through an API
Gateway configured for secure HTTPS access, backed by the Amazon Certificate
Manager issuing custom TLS certificates. This guarantees transport layer encryption and
identity-bound access to telemetry sources. In parallel, external contextual information
— such as weather patterns and terrain data — is fetched via scheduled Lambda functions.
These background enrichment jobs are protected by Network Firewalls and routed
through VPC Endpoints to isolate them from the public internet.

The core of the ingestion logic is implemented via AWS Lambda and Amazon Kinesis
Firehose. Lambda functions classify incoming messages by type (e.g. image, telemetry,
audio), perform basic schema validation and apply initial metadata tagging. This ensures
downstream services receive semantically structured payloads. Firehose transforms and
buffers the data (e.g. to Apache Parquet or Iceberg formats), enabling retries and fault
isolation. Partitioning schemes are applied based on mission ID and source class, with
schema evolution tracked in the Glue Schema Registry.

55

ARCHITECTURE AND DESIGN

Security controls embedded into the account include KMS-managed encryption
of payloads at rest, protection against Distributed Denial-of-Service (DDoS) via AWS
Shield and WAF-based request inspection for API access. Monitoring and alerting are
implemented using CloudWatch and EventBridge, which track ingestion throughput,
transformation failures and operational anomalies. Critical audit logs are forwarded to

a decoupled Audit Account for long-term retention and compliance.

Figure 3.9: Ingest Account (PHM) - Secure telemetry intake and contextual enrichment

56

11oT devices
1Sensors, vehicles, drones,
" mobile control units, etc

()

s

Containerized

for ingest

B kM

b

rContainerized
ready solution

«—

weather data (wind,
precipitation, temp.),
road traffic data,
terrain data

telemetry data,
vehicle health data
(tire pressure,
engine temp., GPS,
speed,...,
audio context (radio
transmission)

Regular key rotation,
compliant encryption,
separate keys for
separate services

Tl Aterative:
Ingestion workload from Outpost with custom
solution for SQS, API GW, etc.
Ingest Account

S

Route 53 Shield

custom DNS name,
health checks
and DNS failover

fetch contextual da@

— from devices
or public internet, e.g. wel¥

e~ Fetch
B (0) contextual data
: 7~

WAF

protection
against DDoS

Network Firewall

e

RN

KMS CloudHSM

KMS

@@ SSE-KMS
key

3 Backup/for
failed transformations

A
o

APl Gateway | Ingest according Firehose 1¢

to content type
(image, JSON, etc)

secure ingest !

Amazon Certificate Manager
with custom HTTPS certificate

CloudWatch alarms:

- Kinesis throughput exceeded
(\’\ - Lambda: concurrent executions, timeouts
Q execution errors
AP Gateway: errors, latency, count
ete.

o L0
O
5
EventBridge Rule
(forwards to
audit account)
GuardDuty

ly/
[h'{l";s] basic fltering (input type)
source tagging
fetries up to 5 times]
put
Ihttps] D

(transformation fo "%,
Apache Parquet / Iceberg, ™| o
allows for retries and DLQ) vﬂ

<
Glue Schema Registry

. |SSEKMS
@ Bilkey
Ro_
KMs

CloufiTrail

pipeline [80]

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

The Data Lake Account forms the analytical and storage-centric core of the PHM
architecture. It is responsible for securely ingesting, persisting and processing teleme-
try and contextual data within a scalable, policy-enforced cloud environment. While
primarily serving as the platform’s long-term data repository, this account also hosts
mission-specific compute logic to enable near-real-time processing and anomaly detec-
tion workflows.

Event Pipeline Decoupling in PHM. The telemetry pipeline is intentionally decom-
posed into discrete NSOV-3 functions — each realised as a serverless Lambda function
— that operate in an event-driven chain. This architectural pattern enables asynchronous
scaling, functional traceability and modular error handling while supporting auditability
across pipeline stages.

57

ARCHITECTURE AND DESIGN

As shown in Figure 3.10, incoming data is first written to a raw storage tier con-
figured in compliance mode, ensuring immutability and traceable auditability. All data
objects are encrypted with service-specific SSE-KMS keys to maintain confidentiality
throughout the ingestion lifecycle. Event-driven triggers initiate downstream compute
modules, typically realised as container-based workloads or serverless functions, which
perform classification, contextual enrichment or plausibility evaluation.

Regular key rotation,
compliant encryption,
separate keys for
separate services

O

.,, q

B] Datalake account ;l Gk
allowing for fine grained

KMS CloudHSM SageMaker, SageMaker,
8@‘3““5 govemnance trained model for _trained model with Bedrock LLM (1) O
idenitying classified vehicle comparison o3
SSE-KMS[- § Transcribe key words health thresholds of weather data
key ?,u £3 =Y Security Hub
! — 5a | %
: B
1 KMS % 4 f 4
: s | /
i '§ 2 |‘ / GuardDuty
<8 / uardDul
ADC {2__13 A GE’ “ Netwark Firewall |
o kel | |
o EvenlBifige/Bus ndpoints and Gateways
f:wlﬁrtil‘f:: with arthiving 3 Vised for $3, DynamaDB,
Jisited i to replay ‘BageMaker, Recognition
) failed gvents f
in complighce mode ;
: Il custom
mar:eps‘:iy";a!::"u plausibility alert
; Extractand Audiocontent | vehicle health plausibility check:
in write weather/ classification nomaly detection vehicle health vs. conte:
trafficerrain + context extraction (weather, terrain, audio CloudWatch
“{ data to DDB
boostable via:
Lambdas store extracted meta data EMR Fargate Glue
§ (GPS, datetime, etc) EventBridge Rule
store C‘n!'"[;‘l‘[3“]"'0 Steams, + classification results + plausibilfty resulls (forwards to audit account]
ps]
artitioned objects—"
per
i Ml B
after x days @
Glue Daty Catalog
ssE RS Glue crawler provides schefna for Athena Shield Route 53
ke protection custom DNS name,
¥
oo_| mmd against DDoS health checks
and DN failover
KMs S
DDB Streams[][]/7 .Q
DynamoDB Athena [
meta data Gonnector query DDB =
Srage (pre-built)
ACM clistom)
HTTPS
certificate
A SSE-KMS
7 ey
@E!- ‘
: pass meta data OpenSearch ~ 2ediock agent API Gitowa
KMS to OpenSearch (indexed meta data) H query API
___ R - |5SEHMS
; . Blkey
] ! o] NAGL
| delete | KMS
Lake)
' : [A
FFormatior ‘ nrﬁi iﬂn(‘% E% %’ !
‘ ' WAF
| Glacier Vault NATO-unclassified NATO-restrioted NATO-ssoret ——rereval
Cloukrall lifecycle policies: Standard -> Standard IA -> Glacier L

Figure 3.10: Data Lake Account (PHM) - Mission analytics, metadata storage and
classified data lifecycle enforcement [80]

58

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

The Consumer Account provides the user-facing access layer of the PHM architecture. As
shown in Figure 3.11, this account exposes selected outputs from downstream analytics
pipelines to authorised users via controlled, queryable interfaces. It allows mission
personnel and analysts to interact with PHM results without compromising the integrity
or classification boundaries of upstream data processing.

Consumer account
/o) Role access to datalake account,
ﬁr]\,m. image evaluation

&

near real-

time
monitoring,
e.g.
in vehicle 8

fleet
dashboard

| Web interface US€rs
S A for querying,

e.g. Amplify
audio data on
demand to

validate
processed results

Figure 3.11: Consumer Account PHM - Presentation and Interaction Layer [80]

The core component is a secured API Gateway, which mediates all external requests
and enforces authentication and authorisation policies via scoped IAM roles. This de-
sign ensures that only explicitly permitted user groups (e.g. operational command,
logistics or vehicle fleet management) can access telemetry-based findings. Role-based
controls are enforced to align with mission confidentiality and coalition interoperability
requirements.

Presentation logic is handled via web applications (e.g. Amplify), offering dash-
boards and interactive interfaces that support mission-state visualisation, anomaly re-
view and contextual alerts. Near real-time updates (e.g. via WebSockets or event-driven
notification services) can be triggered for critical fault indicators, ensuring that end users
are informed promptly and securely.

59

ARCHITECTURE AND DESIGN

Optionally, advanced business intelligence (BI) services (e.g. Quicksight) may be in-
tegrated to visualise statistical trends, usage anomalies or mission readiness states. These
tools enable operational decision-makers to derive strategic insights while ensuring that
no raw telemetry or classified metadata is directly exposed.

By decoupling analytics exposure from the main processing accounts, the Consumer
Account upholds the principle of least privilege and strengthens horizontal separation
between processing and presentation. Its minimal trust surface and role-scoped access
model contribute significantly to platform-wide confidentiality and mission assurance.

Mission-specific processing logic is encapsulated within custom compute modules,
which may invoke pre-trained GenAI models hosted on managed services such as
SageMaker. Extracted metadata — such as timestamps, GPS coordinates or anomaly
scores — is stored in a dedicated DynamoDB metadata repository to support rapid query-
ing and operational alerting via APL

The Data Lake itself is logically partitioned according to NATO classification lev-
els (e.g. Unclassified, Restricted, Secret) and enforces strict encryption key separation.
Lifecycle policies ensure automatic tiering across storage classes (e.g. Standard — Infre-
quent Access — Glacier), optimising both cost efficiency and compliance. A Glue Data
Catalog maintains schema consistency across datasets and enables serverless analytical
access through Athena or OpenSearch indexing.

Compliance and observability are ensured through integrated logging via CloudTrail,
vulnerability scanning by Amazon Inspector and security findings aggregation in
Security Hub. Failed processing attempts are redirected into a Dead Letter Queue
(DLQ), enabling traceability and reprocessing logic. This account thereby encapsulates
both persistent storage and mission-aligned compute logic under sovereign control.

The Audit Account is dedicated to the collection, verification and long-term preser-
vation of security-relevant events across the PHM system landscape. As illustrated in
Figure 3.12, it enables centralised auditability, forensics and compliance enforcement by
integrating logging, threat detection and compliance automation capabilities.

s L1

!

Figure 3.12: Audit Account PHM - Cross-Cutting Security and Compliance
Capabilities [80]

All services and resources deployed in the Ingest, Data Lake and Consumer accounts
stream their security events, access logs and telemetry into centralised, immutable stores
hosted in the Audit Account. Services such as CloudTrail, CloudWatch Logs and VPC
Flow Logs ensure fine-grained visibility into control plane, network and application-level
actions. These logs are then processed and archived using long-term, write-once-read-
many (WORM) storage (e.g. S3 with Object Lock), satisfying auditability and evidence
preservation requirements for sensitive military workloads.

A key architectural feature is the segregation of audit operations from operational
workloads. This ensures that no user or workload can tamper with logs or monitoring
policies from within the mission systems. Instead, the Audit Account maintains read-
only cross-account roles with access to compliance-relevant telemetry and is governed

60

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

by a separate administrative domain with minimal access surface.

Advanced threat detection is enabled via services such as GuardDuty, which contin-
uously analyses log data for anomalies and potential breaches. Findings are program-
matically forwarded to an SIEM or central SOC environment, supporting near real-time
incident response. Additionally, AWS Config and Security Hub provide configuration
drift detection and compliance reporting aligned with military security frameworks
such as NIST 800-53, ISO/IEC 27001 or NATO D/32.

Due to its foundational role in maintaining security assurance, a separate Security
Account is introduced to offload critical monitoring services (e.g. Inspector, Macie) from
the Audit domain and to enforce stricter role isolation. The Audit Account therefore
functions as a forensic archive and compliance anchor, while the Security Account
executes active scanning, classification and vulnerability management.

This two-tiered model reduces blast radius, increases tamper resistance and aligns
with Zero Trust principles. It ensures that audit and compliance functions operate
under strict role isolation and independent control paths, as expected in defence-grade
architectures.

While the CIVS architecture builds upon the same core account segmentation
and orchestration logic as the PHM use case, several service components merit closer
examination due to their heightened security implications.

One notable difference lies in the hardened ingestion pipeline for classified im-
agery data. This includes additional pre-processing layers for pattern-based filtering,
classification tagging and plausibility validation, all executed within enclave-attested
Lambda functions. These steps are explicitly designed to mitigate the risk of tampered or
manipulated visual content being introduced into the system.

Moreover, the use of Amazon Rekognition Custom Labels, tailored to CIVS-specific
mission parameters, introduces a potential attack surface requiring runtime attestation
and policy-constrained key access. In combination with SageMaker-based anomaly detec-
tion and Bedrock-backed LLM correlation checks, these services necessitate fine-grained
auditability and cross-account alert routing, which are realised through a reinforced
EventBridge and Simple Notification Service (SNS) security path.

Finally, given the higher classification level of image data processed within CIVS,
stricter KMS segmentation and compliance tagging are enforced across the Data Lake
Account, following distinct NATO-aligned lifecycle policies for storage, deletion and
retrieval.

This architectural divergence further emphasises the need for isolated security

controls, which are addressed in the following section through the introduction of the
dedicated Security Account.
In accordance with the AWS Well-Architected Framework, the architectural blueprint
separates high-privilege security services from general-purpose audit and monitoring
accounts. The Security Account is dedicated to managing encryption keys (KMS), vul-
nerability scanning (Inspector), web application firewall rules (WAF) and custom HTTPS
certificates. This segregation reinforces the principle of least privilege and facilitates com-
pliance with defence-specific security baselines, especially when integrating sovereign
cloud controls and cross-domain processing mechanisms.

While the technical lead for the overall architectural design was assumed by the
project’s cloud lead architect, the security controls and confidential computing com-
ponents within both reference architectures were specifically developed under my re-
sponsibility. This includes the definition of enclave enforcement logic, remote attestation
flows and policy-driven key release mechanisms across all deployment layers.

These artefacts serve not only as architectural visualisations but also as deployment

61

ARCHITECTURE AND DESIGN

Security Account
=
.{i e
Amazon Certificate KMS keys
Manager (all services)
with custom
HTTPS certificate
@, i
Q N
Amazon Inspector WAF
scan vulnerabilities in
ECS, Lambda

Figure 3.13: OmniAware Security Principles -
Security Account for Cross-Service Security Functions [80]

planning blueprints that were reused for the validation of service flows in Chapter 3.1
and security assurance models in Chapter 3.2.

Having detailed the AWS Well-Architected Framework and the corresponding
reference architectures for the OmniAware platform, the subsequent section explores the
integration and application of HPC within this architectural context. High-Performance
Computing capabilities, while initially considered complementary, become increasingly
critical as operational scenarios evolve towards advanced predictive simulations and
intensive analytical workloads. The following section thus discusses how HPC elements
align with and extend the established architectural principles, focusing particularly on
secure and confidential execution in sovereign environments.

The reference architecture presented in this section establishes a validated deploy-
ment blueprint grounded in the principles of the AWS Well-Architected Framework and
tailored to defence-specific requirements through the SCA collaboration. By structuring
the platform around dedicated accounts, isolated trust zones and WAF-compliant design
patterns, it enables modular, auditable and secure service orchestration. The following
sections apply this validated architecture to concrete use case scenarios — beginning
with the PHM deployment model — to illustrate how the defined architectural principles
translate into executable cloud-native infrastructure within a mission-centric context.

Service-Level Design Rationale for Capability Realisation. The selection of AWS-
native services in the PHM and CIVS reference architectures was driven by the objective
to map each mission-relevant capability to a well-defined, scalable and governable
service implementation.

For instance, in the PHM scenario, telemetry ingestion is realised using Kinesis
Firehose, chosen for its ability to buffer high-throughput sensor data with minimal
operational complexity. The signal classification logic is deployed as an isolated AWS
Lambda function, supporting immutable code artifacts and deterministic invocation
patterns. All telemetry classification results are persisted in DynamoDB to ensure low-
latency access and serverless scalability, while an Audit Account handles forwarding
to WORM-enabled S3 buckets via cross-account policies, fulfilling forensic compliance
requirements.

Similarly, in the CIVS architecture, image ingestion is orchestrated through Event-
Bridge rules that route image references to multiple Lambda-based service functions.
These include pre-processing, AWS Rekognition for object detection and a redaction
module which leverages OpenCV via Lambda Layers to ensure extensibility. The separa-
tion into discrete services allows traceable compliance with classified content handling

62

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

policies and facilitates future upgrades, such as the integration of confidential inference
via Nitro Enclaves.

Each architectural decision thus serves to align functional decomposition with
deployment modularity, account-level governance and attestation compatibility. This
service-to-capability mapping forms the core of the architecture’s compliance-aware
design philosophy.

Capability-Driven Deployment Mapping. The mapping between platform capabili-
ties and cloud-native services is guided by mission-specific requirements. For example,
C1_Cloud Computing Platform leverages AWS Lambda and EC2 instances to ensure
modular orchestration and managed backend execution. C4_Confidential Computing
integrates Kata-based runtimes on SEV-SNP-enabled VMs to enable attested microser-
vices for secure data-in-use processing. C10_Vehicle Analytics builds on
GPU-accelerated Jetson AGX Orin edge devices, reflecting latency-aware trust zone
separation and policy-based inference orchestration.

Deployment Rationale. To maximise operational agility and minimise infrastructure
management overhead, the architecture intentionally prioritises AWS-managed services
over self-managed EC2 deployments. Serverless technologies such as Lambda, Fargate
and Kinesis Firehose enable rapid prototyping, embedded compliance (e.g. IAM scop-
ing, KMS encryption, CloudTrail auditability) and streamlined cost control in line with
WATF best practices. EC2-based enclave deployments were selectively used for confiden-
tial workloads requiring SEV-SNP attestation in sovereign environments where Nitro
Enclaves are not supported.

While confidential computing integration and the inclusion of TEE runtimes such
as Kata played a pivotal role in securing data-in-use, several additional architectural
decisions shaped the system model.

First, the deliberate use of NAFv4 views — specifically NSOV-3, NSOV-6 and NSV-1
— provided a structural anchor to align capability decomposition with deployable service
components.

The adoption of the serverless-first paradigm reflected a strategic design choice to
reduce operational overhead, streamline resource management and avoid the complex-
ity of self-managed container orchestration. This decision is operationalised through
managed services such as AWS Lambda, EventBridge, DynamoDB and Step Functions,
which provide scalable, attested and fully decoupled runtime environments.

Further, the PHM and CIVS reference architectures (cf. Figures 3.7 and 3.8) im-
plement strict account segmentation and trust zone isolation, which serve as runtime
boundaries in accordance with the NSV-1 execution model.

From a composability perspective, each service function—as modelled in NSOV-3—was
implemented as a logically separable unit within a dedicated cloud service account.
This enabled policy-based decoupling of security primitives, lifecycle management and
infrastructure concerns.

Finally, the explicit exclusion of Kubernetes-native confidential containers and ser-
vice meshes reflects a pragmatic trade-off. While promising, their current limitations in
attestation support, integration maturity and sovereign trust enforcement were deemed
insufficient for deployment in a constrained PoC setting.

In sum, the architectural decisions embody a hybrid principle: capability-driven ab-
straction rooted in NAFv4 traceability, combined with practical cloud-native realisations
that balance composability, manageability and defence-aligned compliance boundaries.

63

ARCHITECTURE AND DESIGN

Model-Realisation Divergence and Kubernetes Deferral in Q1-Q2. The realised ar-
chitecture in Q1 and Q2 reflects a pragmatic instantiation of the modelled capabilities
using AWS-native serverless primitives, such as Lambda, Eventbridge and Firehose,
to minimise operational complexity and accelerate time-to-value in a tightly scoped
environment. Rather than deploying full Kubernetes orchestration, the system em-
ploys lightweight, modular services to validate core functional paths under real-world
constraints, laying the groundwork for future orchestration extension.

This deviation reflects a conscious prioritisation of minimal viable product (MVP)
delivery over full container orchestration. Particularly in mission-grade environments
with strict compliance requirements and auditability constraints, the use of serverless
services ensures better traceability, lower overhead and immediate integration with
AWS’s WAFR-aligned controls.

Accordingly, the current reference architectures (Figures 3.7 and 3.8) capture a
streamlined, account-isolated structure that omits Kubernetes control planes, container
orchestration layers or service mesh logic. These elements may be introduced in future
capability expansions (cf. Q3-Q4 roadmap) once platform maturity and compliance
state permit. The modelled design thus intentionally diverges from the actual PoC
deployment topology to maintain forward compatibility without overengineering early
phases.

3.2.4 High-Performance Computing

Although not the primary focus of the current implementation, selected architectural
design elements were developed with High-Performance Computing (HPC) use cases
in mind. These include defence-relevant workloads such as digital twin simulations,
predictive maintenance, federated model training and encrypted batch processing across
secure sovereign clouds.

Within the scope of the OmniAware platform, HPC integration was considered
primarily at the cloud tier (e.g. AWS EU Central 1), where advanced compute resources
including GPU/TPU-based instances, high-throughput networking (e.g. ENA or SR-
IOV) and NUMA-aware scheduling are available. In combination with SLURM or
container-native batch systems (e.g. AWS Batch), this enables parallel execution of
simulation-heavy tasks and compute-intensive Al training.

Security and compliance requirements were a key design driver. In this context,
HPC workloads can be executed inside SEV-SNP protected virtual machines, ensuring
cryptographic isolation and policy-enforced key provisioning for mission data. Although
a performance trade-off exists due to hardware-based memory encryption and attes-
tation flows, these measures are justified by the required data-in-use confidentiality
guarantees [61].

Initial explorations also considered lightweight, edge-deployable HPC variants
(e.g. GPU-enabled Jetson Orin clusters in the CIVS context), which could serve as
decentralised inference backends or simulation nodes. However, limitations in energy
efficiency, attestation compatibility and orchestration tooling currently constrain their
practical deployment in defence-grade scenarios.

This section outlines only preliminary considerations. A more comprehensive
HPC integration — including confidential containerised scheduling, real-time workload
offloading and sovereign Al training pipelines — is foreseen for future capability
expansions.

64

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

While the reference architectures presented above serve to visualise the concrete
deployment structure, including the services allocated across the various cloud accounts
(e.g. Ingest, Datalake, Audit), their primary purpose lies in contextualising the platform
design within a distributed computing paradigm. These architectural visualisations
enable the mapping of deployed services to the underlying layers of cloud, edge and
HPC infrastructure, thereby bridging operational capabilities with deployment-specific
constraints.

To complement the architectural discussion above, the following NAFv4-compliant
models (NSV-1, NPV-1, NPV-2, NAV-1) visualise selected aspects of the OmniAware system’s
deployment and standard alignment. These views formalise the platform’s layered
deployment logic, service allocation and classification structures in accordance with the
NATO Architecture Framework methodology.

3.2.5 Deployment, Compliance and Structural Governance

To complement the formal introduction of the NSV-1 view in Section 3.1, the following
discussion situates the system deployment logic within the broader context of cloud,
edge and high-performance computing paradigms as defined in this section. While
Figure 3.5 has already illustrated the runtime alignment of services across trust zones,
this section now elaborates how the deployment model supports federated execution
across distributed tiers.

Building upon the system deployment view previously introduced in Figure 3.5,
this section recontextualises the NSV-1 artefact with respect to runtime tiering across
cloud, edge and high-performance computing environments.

The NSV-1 model in Figure 3.5 visualises the runtime alignment of core ser-
vices in the OmniAware architecture across differentiated execution tiers, governed
by trust boundaries and mission scope. In the context of cloud computing, general-
purpose backend functions — such as S1_Ingestion Service, S2_Secure Storage and
S3_Metadata Management — are deployed in memory-encrypted virtual machines (VMs)
backed by SEV-SNP, offering full-stack confidentiality through enclave-supported Kata
Confidential Runtime and policy-bound key release.

Edge deployments are characterised by highly mission-specific execution logic —
including PHM- and CIVS-bound components such as $10-513 and S20-523 — exe-
cuted in OP-TEE-enabled embedded compute units (e.g. Jetson AGX Orin). These edge
workloads represent trusted execution cores operating under degraded connectivity and
resource constraints, while maintaining local assurance guarantees through embedded
runtime integrity.

While not explicitly modelled in the current artefact, high-performance computing
(HPC) contexts are implicitly enabled via enclave-compatible cloud compute nodes
that support enclave-aware containerisation, for example using attested Kata-based
orchestration in GPU-accelerated EC2 or Fargate workloads. These deployments are
architected to offload model-intensive analytics (e.g. fault prediction, cross-validation or
simulation) from latency-sensitive edge tiers into confidential backend services.

In summary, the NSV-1 view reflects a tiered deployment strategy, aligning services
with the optimal execution environment based on latency, confidentiality and mission
relevance — thereby ensuring secure, scalable and mission-resilient system operations
across federated cloud-edge infrastructures.

The NPV-1 view, illustrated in Figure 3.14, models the planned evolution of key
architectural capabilities over time, following the NATO Architecture Framework’s

65

ARCHITECTURE AND DESIGN

temporal logic. It aligns technical deliverables with defined quarterly milestones and
maps capability chaining to ensure architectural and operational consistency.

2025

Ql - Core Infrastructure/Enablers

[cicloud) C5_NATO ff

‘ Computing Classification
J Processing

Platform

[C2sensor of] €10_Vehicle
‘ Data ‘ Health

Ingestion Analytics

‘ C3pata n@‘ e C12_Sensor o
Data Fusion
[Pre- |

| ca_Confident uﬁ“ C22_Analyst
ial I Feedback
Computing/D | Loop

Figure 3.14: NPV-1: OmniAware Architecture Roadmap (Q1-Q2)

As shown in the figure, Q1 capabilities — including C1_Cloud Computing Platform,
C2_Sensor Data Ingestion, C3_Data Normalisation/Pre-Processing and
C4_Confidential Computing/Data Sovereignty — establish foundational infrastruc-
ture for secure execution and compliant data handling. These services enable the
realisation of Q2 capabilities in Initial Processing/Analytics, such as vehicle telemetry
analytics (C10), NATO classification pipelines (C5) and sensor fusion logic (C12), all of
which depend on pre-ingestion processing and trusted compute environments.

The directional serves relationships model the dependency flow between capability
layers, ensuring that mission logic is grounded in validated infrastructure. Capabilities
like C12_Sensor Fusion and C22_Analyst Feedback Loop operate as key integrators,
linking upstream infrastructure with downstream decision-making workflows.

Notably, the current model is scoped to the capabilities of Q1 and Q2. While the
overall roadmap spans four quarters, modelling for Q3 and Q4 has been deliberately
omitted. This decision reflects the project’s present maturity level and the evolving
nature of stakeholder priorities within the SCA framework. As the strategic direction
and technical priorities for these later quarters are still undergoing refinement, omitting
them avoids premature specification and overcommitment to unstable milestones.

In summary, the NPV-1 deployment roadmap provides a visual and semantically
structured representation of early-stage architectural progression. It captures the realised
and planned capabilities under the PoC scope and ensures coherence with the validated
scenario logic underpinning the OmniAware platform.

The NPV-2 elaborates the physical instantiation of capabilities over time by structur-
ing them into Lines of Development (LoDs). Each LoD represents a coherent sequence
of technical activities, infrastructure evolutions and mission-focused deliverables aligned
with defined operational contexts. It provides a temporal and structural logic for how
capabilities progress from planning to realisation.

Building on the layered semantics of NAFv4, the NPV-2 model formalises how
abstract capability elements defined in NCV-2 are instantiated as technology-specific
deployment artefacts — including software containers, VMs, enclave-enabled runtimes
and edge compute platforms. This mapping leverages realises relationships to trace
capabilities to their physical execution layers, ensuring consistent alignment with mission
needs, delivery environments and security postures.

In the case of OmniAware, two principal Lines of Development have been iden-
tified. The first is centred around the PHM use case, comprising capabilities related
to telemetry ingestion, secure processing and edge analytics. The second addresses

66

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

the CIVS scenario, where secure image handling, contextual verification and federated
analysis are prioritised. These LoDs serve as structural backbones for engineering and
operational rollouts, ensuring continuity across development phases and cross-account
security boundaries.

Deployment Alternatives. While EC2-based deployments offer flexibility and enclave
integration (e.g. SEV-SNP), they require manual orchestration, patching and lifecycle
control — which were deemed impractical for a time-boxed PoC with limited opera-
tional scope. By contrast, AWS-managed services abstract infrastructure overhead while
embedding WAF-aligned security primitives. Alternative technologies such as Fargate
for confidential workloads or Intel TDX-backed clusters were evaluated but ultimately
excluded due to edge portability constraints or insufficient ecosystem maturity.

Figure 3.15 illustrates the currently implemented NPV-2 model for the first two
quarters, reflecting only those capabilities that are scheduled for realisation during
the core duration of this thesis project. This scope limitation aligns with the fiscal
segmentation imposed by the Strategic Collaboration Agreement (SCA), whereby Q1
ends in April and Q2 in July 2025. As the roadmap beyond this period remains subject
to change, capabilities planned for Q3 and Q4 have deliberately been excluded to avoid
speculative modelling.

Scope Delimitation. This modelling decision reflects a conscious trade-off between
architectural completeness and implementation fidelity. Rather than extending the
deployment roadmap beyond the maturity level achievable within the thesis timeline,
the scope was deliberately confined to Q1-Q2 to ensure validation depth, model accuracy
and methodological soundness. Additional quarters were withheld to avoid speculative
overreach and to preserve focus on realisable artefacts.

2025 B

|Q1 - Core Infrastructure /Enablers

Cl Cloud C2_Sensor o C3Data off C4_Confident C5_NATO off C10_Vehicle C12_Sensor C22_Analyst
o ial Classification Health Fusion Feedback
Processing Analytics Loop

26_PHM_Vehicle (EDGE)
31-1-1
1_Edge Pod

[™ 27_CIVS_Vehicle (EDGE)

S

2-1-1-
1.1 Edge Pod:,

20_AWS EU [y =

(]
22_8WI pCloudBw [(-
00_AWS Nitro (7] o1AvD el
Enclave VM| SEV-SNP
§ Confidential TS
: Sovereign

Cloud

. oiawD

SEV=SNP
Confidential

Figure 3.15: NPV-2: OmniAware Lines of Development and Deployment Topology
(Q1-Q2)

The diagram highlights how each capability is anchored to a specific platform,
ranging from general-purpose VM infrastructure to enclave-secured Kubernetes pods
on AWS Nitro and Jetson-based edge hardware.

Orchestration Alternatives. Alternative orchestration models — such as enclave-
enabled AWS Fargate or Intel TDX-backed container clusters — were reviewed but
intentionally omitted. While Fargate lacks edge portability and sovereign trust integra-
tion, Intel TDX — despite its promising architecture — remains an emerging technology
with limited ecosystem maturity, restricted attestation interoperability and insufficient
validation in defence-grade deployments. As of mid-2025, robust integration with

67

ARCHITECTURE AND DESIGN

sovereign or air-gapped environments remains technically constrained, rendering Intel
TDX unsuitable for operational modelling in this context.

In Q1, foundational infrastructure such as the sovereign cloud platform (C1), sensor
ingestion points (C2) and pre-processing units (C3) are instantiated across central cloud
nodes and edge proxies. Confidential workloads (C4) are bound to trusted execution
environments using either AMD SEV or Nitro Enclaves, depending on the deployment
domain.

Capabilities introduced in Q2, including advanced analytics (C10, C12) and mission-
aware human feedback loops (C22), are deployed in dedicated pods, segmented by
execution constraints and mission roles. Notably, some nodes — such as the CIVS
Consumer Pod — span multiple LoDs, revealing shared infrastructure dependencies.
This enforces the architectural principle of composability, ensuring capabilities can be
developed and tested in isolation yet deployed in integration.

To maintain clarity, the figure clusters capabilities within each LoD and links them to
the underlying deployment environments. Each platform is annotated to reflect the type
of nodes it supports (e.g. EC2 AMD-SEV, Kata, Jetson) and which capability instances it
hosts. An important architectural distinction within the NPV-2 view lies in the separa-
tion of cloud platform environments based on their supported confidential computing
capabilities. Specifically, two sets of sovereign cloud locations are modelled: the AWS
Sovereign Cloud (Germany-BMI) and the AWS EU Central (Frankfurt) region on the
one hand and the BWI pCloudBw on the other.

While the former are assumed to support both AMD SEV-SNP-backed virtual ma-
chines and AWS Nitro Enclaves, the latter is currently modelled with AMD SEV-SNP
as the sole supported confidential computing primitive. This reflects the current de-
ployment constraints and hardware assumptions associated with the BWI-operated
pCloudBw infrastructure, which does not natively expose AWS Nitro Enclave function-
ality at the time of this writing.

Sovereign Trust Anchor: Choosing SEV-SNP over Nitro and TDX. The use of SEV-
SNP-based virtual machines as the default confidential computing primitive reflects a
deliberate choice for sovereign, interoperable trust enforcement. In contrast to Nitro
Enclaves, which depend on proprietary attestation and tight AWS integration, SEV-
SNP enables externally verifiable attestation chains and policy-bound confidentiality
across providers. TDX-based container stacks, while promising, were excluded due to
insufficient integration maturity and the absence of stable confidential orchestration
tooling in sovereign deployment scenarios.

Technology Selection. The choice to model all confidential computing workloads
with SEV-SNP reflects a deliberate architectural decision in favour of a more open and
interoperable trust anchor. Unlike AWS Nitro Enclaves, which are tightly integrated into
the proprietary AWS attestation and key release infrastructure, SEV-SNP enables verifi-
able attestation flows that are not confined to a single cloud provider. This universality
supports the modelling of sovereign trust domains across heterogeneous platforms —
including national and coalition cloud environments. Moreover, SEV-SNP’s support for
full virtual machine (VM) isolation with externally verifiable integrity measurements
makes it a preferred choice for federated deployments in contexts where cloud-native
services such as Nitro Enclaves are either unavailable or incompatible with national gov-
ernance constraints. The resulting architecture aligns with the decentralised attestation
logic discussed in Section 3.2, reinforcing policy-bound trust enforcement and platform

68

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

neutrality within sovereign mission contexts.

Accordingly, capabilities mapped to the BWI environment are exclusively realised
through SEV-SNP backed deployments, enforcing container or VM-level attestation via
AMD’s Secure Processor. This differentiation ensures realistic modelling of confidential
workloads and underlines the technical divergence in sovereign cloud environments
across national providers. The realisation links have been manually verified and reflect
the authoritative decomposition of mission functions into executable artefacts.

By consolidating mission-specific instantiations, the NPV-2 view supports hardware-
aware rollout planning, identifies shared execution targets and reveals implicit depen-
dencies across LoDs. It complements the service-level mapping established in NSV-1
and forms the physical backbone for further operational planning within sovereign
defence deployments. To ensure semantic consistency and traceability across modelling
artefacts, the following view introduces the NAV-1 model. It documents the architectural
principles, deployment primitives and system classifications embedded within the PoC
and situates the realised mission functions within a structured reference architecture
aligned with the principles of the NAFv4 methodology.

The Architecture Foundation Viewpoint NAV-1 provides a meta-level representa-
tion of the architecture as a managed, traceable and semantically coherent artefact set.
Within the NAFv4 modelling structure, NAV-1 plays a central role by documenting the
architectural scope, artefact status, stakeholder responsibilities and versioning history of
the system model. Its objective is to ensure that the architectural process adheres to a
formally governed methodology and remains auditable across its entire lifecycle [74].

The NAV-1 view developed for the OmniAware platform reflects three essential
governance artefacts defined in the official NATO Modelling Guide: the A2: Architec-
ture Products catalogue, the A5: Architecture Status tracker and the A6: Architecture
Versioning scheme. Together, they form the foundational registry for all architectural
viewpoints and provide a single source of truth for methodological consistency and
stakeholder alignment.

The A2 artefact register includes all formally modelled views produced through-
out the architectural process — including, but not limited to, capability mappings (e.g.
NCV-2), logical service interactions (NSV-5), physical resource deployments (NPV-2) and
confidential computing integration models (NSV-1). Each view is assigned a unique
identifier, associated viewpoint class, responsible domain (e.g. technical, operational, se-
curity) and publication status. These attributes are mapped directly within the modelling
environment using structured folders and tagged metadata.

To support lifecycle traceability, the A5: Architecture Status mechanism captures
the maturity level and validation state of each artefact. Views developed in iterative
cycles are annotated as Draft, Validated or In Review, depending on their degree of internal
approval and external feedback (e.g. from internal Capgemini team, governance or AWS
solution architects). This enables stakeholders to distinguish experimental modelling
artefacts from production-grade architecture inputs used in the AWS FTR or the FRK.

Version control is formalised using the A6: Architecture Versioning construct,
whereby each artefact is assigned a semantic version identifier (e.g. v0.9-draft,
v1.0-final), along with associated change logs and governance notes. This structure
ensures full transparency in the evolution of architectural models, enabling reproducibil-
ity, rollbacks and documentation of rationale. Version tracking is managed using model
annotations and embedded documentation, aligned with the principles of model-driven
governance outlined by NAFv4.

The NAV-1 viewpoint therefore constitutes the architectural backbone for trace-
ability, reproducibility and methodological governance. It ensures that all architectural

69

ARCHITECTURE AND DESIGN

products are consistently catalogued, assigned clear responsibilities and subject to con-
tinuous refinement based on stakeholder input. As such, it not only provides an internal
quality assurance mechanism, but also aligns the architecture with NATO’s formal
requirements for multi-stakeholder and multi-domain interoperability.

Figure 3.16 illustrates the NAV-1 view for the OmniAware platform. The model serves
as a structured consolidation of all architectural artefacts, standards and validation
procedures referenced throughout this thesis. It formalises their integration into a
traceable compliance baseline and connects each element to its underlying methodology,
regulatory context or review evidence.

The view is divided into five logical sections (A-E), aligned with NATO Architecture
Framework Version 4 (NAFv4) best practices and ArchiMate modelling conventions.
Each section contributes to the validation and traceability of the architectural baseline.

Section A (Artefacts) enumerates all core deliverables developed during the project’s
first two quarters. These include model views such as NCV-2, NSV-1 and NPV-2, but also
narrative artefacts like the PR/FAQ, the Field Ready Kit (FRK) and the consolidated reme-
diation plan with included high-risk items. Notably, the section differentiates between
implementation artefacts (e.g. IaC), project planning outputs and assessments such as
the FTR and WAFR results. Importantly, artefacts such as Versioning and Status anchor
deliverables within the SCA-aligned milestone structure.

Section B (Standards and Frameworks) provides an overview of all regulatory and
methodological sources that constrain or guide the system’s design. These include both
strategic standards (NAFv4, UAF-DMM, NATO ArchiMate Guide) and technical compliance
requirements such as ISO/IEC 27001, BSI C5, AWS TSE-SE and STANAG 4774/4778. All
elements are represented as Constraints or Principles, depending on whether they
mandate specific properties or provide architectural guidance. By clustering them
semantically, the model allows for cross-referencing artefacts in Section A with their
compliance roots.

Section C (Methodology) contains the methodological blueprint underpinning
the system model. Key references include the ArchiMate Modelling Guide for NAFv4,
Capability-driven Design and the adoption of Model-driven Engineering. The mod-
elling rationale for traceability (NCV — NSV), lifecycle alignment with the SCA and view-
point decomposition logic is anchored here. Each element is structured as a Principle.

Section D (Architecture Compliance) documents the validation state of the cur-
rent architecture. Key assessments include the general Compliance Status, an explicit
Validation Record: AWS FTR and the most recent Review Date. Version control is for-
malised through a concrete Model Version v1.0, while residual issues such as Open
Risk: Data Sovereignty are documented as Constraints. This section can be extended
over time to reflect future model iterations, including Q2 or Q3 validation events.

70

3.2 CLOUD, EDGE AND HIGH-PERFORMANCE COMPUTING

NAV-1: Standards and Reference Architecture B

A: Artefacts =] B: Standards and Frameworks =] C: Methodology =]
NCV-2: Gz NCV-3: Sz NSOV-3: O NAFv4 (D) NATO (O Confidential (1) Archi 5.5 + () ArchiMate (T) Lifecycle (1)
Capability Capability Service ArchiMate ‘ Computing ‘ ArchiMate 3. Modelling ‘ Traceability
Dependencie Roadmap Functions Guide First 2 Guide for (NCV — NSV
NSOV-6: Gz NSV-1: = NPV-1: Oz Data (1) UAF-DMM (1) AC322-D /17 Capability- (1) Design (T Zero-Trust (T)
Service System Architecture Sovereignty (2021) driven Science Modelling
Structure Deployment Roadmap Enforcement 0032-REV1 Design Research
NPV-2: Lines Oz NSV-4a: 2= NSV-6: D= STANAG /7 STANAG /77 1SO/IEC /77 Model- (1) ScA
of Service System 4778 ‘ 4774 ‘ 27001 ‘ driven Alignment &
Developmen Policy States. (Access (Metadata Engineering AWS Co-
NPV-3: Oz NSOV-2: Gz NSV-2: G= NIST /77 EUCS BU /7 AWS Well- 77
Progress Service Resource Confidential ‘ Cloud ‘ Architected
Assessment Interfaces Flows Computing Security) Framework
NSV-4c: D= (=] PRIFAQ B AWS Trusted 77 BSI C5 (DE /77 AWS 7
Service Secure ‘ Cloud ‘ Foundationa
Interactions Enclave (TSE Controls) | Technical
laC 0 Project Plan C1 Remediation I
(CloudForma Plan, incl.
tion) HRI
FIR 0O WARR O Versioning /77
and Status
T x T
! ! {
realises constrains realises
; | ;
D: Architecture Compliance (Status/Version) =]
Compliance O Validation O Model 1 | Review Date: 1
‘ 3 Record: AWS Version v1.0 2025-05-31
OmniAware FTR

Open Risk: 77
‘ Data

Sovereignty

E: Meta-Information (Owner/Creation Date/Classification) B

Author: © Creation Date: 0O
‘ Valentin 2025-03-29
Pfeil

Classificatio 77 Access: Do not /77
‘ n: SECO- share outside
Public Project and Thesis

Figure 3.16: NAV-1: OmniAware Standards and Reference Architecture

Section E (Meta-Information) provides metadata for traceability. This includes
the document owner, creation date and classification level. The access notice restricts
external sharing to the thesis context and designated project stakeholders.

Overall, this view ensures that all design decisions, artefacts and validations are
grounded in traceable and structured architectural evidence. It complements previous
capability- and deployment-centric models by offering a compliance-centric lens through
which the architecture’s rigour, maturity and alignment with formal standards can be
assessed.

The NAV-1 and its placement within this chapter — which focuses on the deployment
and interaction of cloud, fog and edge computing layers — reflects the necessity of
aligning runtime system representations with a traceable architectural foundation. Cloud-
native defence systems require not only performance and interoperability but also
verifiable alignment with standards, secure lifecycle governance and traceable modelling
methods. These aspects are encoded within the NAV-1 structure.

Tool Selection. The choice of using Archi and draw.io over formal toolchains such
as Sparx EA or OpenSCAP-based compliance modelling was based on accessibility, re-
producibility and architectural transparency. While these platforms offer extended
automation or policy-mapping features, they often require proprietary licensing or as-
sume specific runtime infrastructures. The selected tools allow for lightweight, traceable
and version-controlled modelling aligned with project-specific governance constraints.

Specifically, the NAV-1 view aggregates and contextualises core design principles (e.g.
Capability-driven Design, Zero-Trust Modelling), modelling artefacts (e.g. NPV-2:

71

ARCHITECTURE AND DESIGN

Lines of Development) and validation mechanisms (e.g. AWS FTR, WAFR) into a struc-
tured compliance framework. It thereby documents the foundational rules under which
the physical deployment layers in NPV and NSV views are defined and validated.

Furthermore, the inclusion of artefacts such as the PR/FAQ, IaC CloudFormation
and the structured application of AWS’s TSE assessment in NAV-1 supports a unified
audit trail between strategic principles and executable deployments. It bridges the
gap between model-level governance and system-level instantiations in a federated
deployment environment.

While the views presented so far — NSV-1, NPV-1/2 and NAV-1 — primarily address
deployment, compliance and structural governance of the architecture, the subsequent
section introduces a shift in focus towards the security-critical execution logic underpin-
ning the OmniAware platform.

Granularity and Visual Abstraction. To maintain methodological rigour and prevent
overmodelling, all reference diagrams — particularly within NSV-1 and NPV-2 —
follow a black-box abstraction principle. While more granular internal states (e.g. kernel
versions, enclave hash trees, node-level firewall rules) could have been modelled, these
were intentionally abstracted to preserve generalisability and ensure focus on mission-
aligned architecture components.

The architectural structures introduced in this chapter do not aim at exhaustive-
ness, but at rigorous, standards-aligned abstraction. By combining NAFv4-compliant
viewpoints with validated secure-by-design principles, the architecture forms a robust
methodological base for secure, mission-centric system realisation. The following chapter
evaluates how this architecture manifests in implementation.

3.3 CONFIDENTIAL COMPUTING

Summary: This section focused on the integration of confidential computing to enforce
data confidentiality across heterogeneous environments. The chapter elaborated on
architectural strategies involving TEEs, the application of runtime attestation mecha-
nisms and the deployment of enclave-based service execution using technologies such
as AMD SEV-SNP and AWS Nitro Enclaves. Furthermore, the decision to adopt Kata
Confidential Runtime was substantiated through comparative analysis against alternatives,
highlighting its alignment with the Vault-based policy enforcement framework. The
resulting blueprint ensures cryptographic assurance and compliance without compro-
mising operational agility.

The increasing reliance on distributed and federated computing environments across
military and intelligence domains has intensified the need to protect sensitive data not
only at rest and in transit, but also during active processing. confidential computing
addresses this requirement by enabling secure processing of data-in-use through the
application of hardware-enforced TEE technologies.

Unlike conventional protection mechanisms such as encryption at rest or in tran-
sit, which merely safeguard data stored or transported across systems, confidential
computing provides runtime protection against threats originating from compromised
system software, privileged insiders or co-tenants in multi-tenant environments [33].
This is particularly relevant in defence-grade environments where coalition operations,
sovereign control and cross-domain execution increase the attack surface.

According to the Confidential Computing Consortium (CCC) [70], confidential
computing is defined as:

72

3.3 CONFIDENTIAL COMPUTING

The protection of data in use by performing computation in a hardware-based, attested
Trusted Execution Environment (TEE).

This thesis adopts this definition and applies it specifically to defence cloud and
edge architectures, where mission-critical data must remain protected across the full
data lifecycle — including real-time processing, in-situ analytics and dynamic decision
support. While confidentiality of data-at-rest and data-in-transit is assumed to be enforced
via conventional encryption and network-level safeguards (e.g. TLS, VPN, KMS), the
unique contribution of confidential computing lies in its ability to protect data during
active computation on potentially untrusted hosts.

3.3.1 Security Architecture and Attestation Workflow

The OmniAware platform places a particular emphasis on data-in-use confidentiality
due to the high sensitivity of telemetry, sensor fusion and imagery data. These data
types not only reflect operational states and mission intentions, but also inform tactical
decisions in near-real-time. Consequently, any unauthorised inference or compromise
during runtime could lead to mission disruption or strategic disadvantage.

Figure 3.17 visualises the typical data lifecycle in military systems and situates
confidential computing within the broader security context.

=7 oS A = N
‘@ 0-a-0J (=8

Data at Rest Data in Transit In use
Encrypt inactive data when stored in Encrypt data that is flowing between Protect/Encrypt data that is in use, while
blob storage, database, et. untrusted public or private networks. in RAM and during computation.

Figure 3.17: Data Lifecycle and Protection Domains: Confidential computing secures
data during active processing (in use) and complements existing mechanisms for at rest
and in transit protection [35].

In summary, confidential computing forms a foundational building block of secure
mission computing by enabling verifiable isolation, cryptographic attestation and policy-
enforced key release — even under degraded trust assumptions. Its adoption in the
OmniAware architecture supports the strategic objectives of information sovereignty,
zero-trust execution and federated collaboration across defence ecosystems.

Beyond its technical capabilities, confidential computing also aligns with key security
and compliance frameworks applicable to defence-grade infrastructures. These include
the NATO Cloud Security Instruction AC/322-D(2021)0032-REV1-U [20], which mandates
enclave-based protection, attestation and workload isolation for mission-sensitive data.
National standards, such as the German BSI C5 catalogue [11], provide control base-
lines for regulated cloud operations and map directly to ISO/IEC 27001:2022 through
structured compliance tables [24]. Complementing these, the AWS Trusted Secure En-
claves Sensitive Edition (TSE-SE) guidance [81] defines provider-side implementation
best practices for confidential workloads. Together, these frameworks reinforce the
strategic relevance of confidential computing in sovereign and coalition-based defence
environments.

This foundational understanding of confidential computing sets the stage for a
more detailed discussion of its architectural implications, particularly with respect to

73

ARCHITECTURE AND DESIGN

security requirements, standardisation frameworks and Trusted Execution Environment
integration strategies.

Confidential computing plays a critical role within secure system architectures
by addressing foundational security requirements in defence-grade cloud and edge
environments. These requirements include data sovereignty, isolation, compliance assurance,
attestation and secure key management. Each of these dimensions is essential to enable
mission-critical data processing under adversarial or coalition-based conditions.

To address these challenges, confidential computing integrates with established
security frameworks, such as those outlined by NIST, ISO/IEC 27001 and the NATO
Architecture Framework [53], [74]. These standards provide baseline controls for crypto-
graphic operations, trust establishment, policy enforcement and lifecycle management
of sensitive workloads.

At the architectural level, several principles have emerged as indispensable for
modern military IT systems. These include:

¢ Zero Trust: assumes no implicit trust — neither in networks nor in identities —
and requires continuous verification at all access boundaries;

¢ Security-by-Design: integrates security as a core component from the earliest
stages of system development;

¢ JTaC (Infrastructure as Code): ensures deterministic, reproducible and auditable
deployments by codifying infrastructure artefacts;

¢ Automated Compliance Enforcement: enables continuous validation of system
states against pre-defined policies using automated controls and tooling.

Confidential computing aligns strongly with these principles. By enforcing hardware-
based runtime isolation, it enables the practical realisation of Zero Trust concepts at
the compute layer. Furthermore, the use of remote attestation mechanisms strengthens
compliance auditing and supports policy-based workload orchestration, even across
untrusted or federated domains.

TEEs form the technological anchor of this paradigm. They establish an isolated,
attested enclave within the processor, allowing sensitive computations to occur without
exposure to the host operating system or hypervisor. This guarantees that mission-critical
processes remain verifiable and confidential — a prerequisite for coalition operations,
cross-domain data exchange and secure multi-tenancy in sovereign defence cloud
platforms.

In addition to its architectural contributions, confidential computing supports
compliance with strategic security frameworks and cloud assurance catalogues relevant
to defence operations. One such directive is the NATO Security Instruction AC/322-
D(2021)0032-REV1-U, informally referred to as “NATO D32”, which mandates enclave-
based isolation, remote attestation and workload separation for handling classified
mission data in coalition environments [20]. This instruction outlines both technical and
procedural requirements for mission data processing, including constraints on identity
federation, cryptographic boundaries and audit traceability.

At the national level, the German Federal Office for Information Security (BSI)
provides the Cloud Computing Compliance Criteria Catalogue (C5), which defines a control
baseline for the operation of cloud workloads under regulatory oversight [11]. The
2022 extension of this standard further aligns with ISO/IEC 27001 by providing a
reference mapping of C5 controls to information security management requirements [24].

74

3.3 CONFIDENTIAL COMPUTING

Confidential computing aligns with C5 across key areas such as access control, data
isolation, cryptographic operations and audit logging, especially when operated within
Trusted Execution Environments.

Cloud-native frameworks such as the AWS Trusted Secure Enclaves - Sensitive Edi-
tion (TSE-SE) specification [81] complement these efforts by defining provider-specific
security profiles for enclave-based workloads. The TSE-SE model emphasises runtime at-
testation, dynamic key release and enforcement of immutable infrastructure definitions,
thereby ensuring that confidential workloads remain verifiably isolated throughout their
lifecycle.

These external frameworks reinforce the applicability of confidential computing to
sovereign and coalition-aligned defence deployments. Their shared emphasis on attesta-
tion, cryptographic trust roots and lifecycle assurance directly map to the capabilities
enabled through confidential computing and validate its architectural integration within
the OmniAware platform.

Trusted Execution Environments (TEEs) form the technological foundation of confi-
dential computing by establishing secure enclaves within a processor or platform that
guarantee the confidentiality and integrity of data-in-use. They offer isolated execution
contexts that are resistant to attacks from privileged system software, hypervisors and
co-located tenants [70]. In the defence context, TEEs are particularly valuable due to
the increasing reliance on distributed computing infrastructures and the requirement
to enforce policy-compliant data protection — even under coalition or contested trust
conditions.

This thesis focuses on three representative TEE implementations, each designed for
a distinct deployment domain:

e AMD SEV-SNP: Designed for virtualised cloud infrastructures, SEV-SNP encrypts
memory pages and ensures runtime state integrity through Secure Nested Paging
and the integration of a Memory Integrity Tree. It extends AMD’s Secure Encrypted
Virtualisation by adding support for attestation, restricted hypervisor access and
secure VM state handling [32].

* AWS Nitro Enclaves: A cloud-native TEE model embedded within Amazon EC2
instances, Nitro Enclaves provide hardware-isolated execution by creating a secure
enclave without persistent storage or network access. Data exchange occurs via
vsock interfaces and workload attestation is supported via AWS KMS integration
and a Nitro Attestation Document [81].

¢ Jetson OP-TEE: Based on the ARM TrustZone architecture, OP-TEE is tailored
for embedded and edge deployments. It supports secure boot, cryptographic
services and isolated execution of Trusted Applications (TAs) in the Secure World,
separated from the Rich OS. Its lightweight footprint makes it suitable for tactical
devices in constrained environments such as CIVS or PHM edge nodes.

From a design perspective, the technical differentiation among these TEEs can
be summarised along six dimensions: deployment scope, isolation method, attestation
capability, trusted root, code and data confidentiality and integration overhead. Table 3.1
provides a comparative overview:

The suitability of each TEE type for military deployments depends on several factors:
sensitivity of data, required level of decentralisation and compliance requirements.
SEV-SNP excels in cloud or fog infrastructures with virtualised workloads that require
isolation from the hypervisor. Nitro Enclaves, being tightly integrated with AWS services,

75

ARCHITECTURE AND DESIGN

Table 3.1: Comparison of Selected Trusted Execution Environments [42], [61], [81]

Feature

AMD SEV-SNP

AWS Nitro Enclaves

Jetson OP-TEE

Deployment Scope

Cloud Virtualisation,
Cloud-native

Embedded

Tactical Edge

Isolation Method

Encrypted VM Memory,
Integrity Tree

Dedicated vCPU, vsock-
only IPC

ARM TrustZone World
Partitioning

Remote Attestation

Supported (SEV certificate
chain)

Nitro Attestation Docu-
ment via KMS

Custom TA-based Attesta-
tion

Trusted Root

AMD Platform Security
Processor

Nitro Hypervisor

TPM, ARM SoC fuses /
BootROM

Code + Data Confiden- | Strong Strong Medium-High

tiality

Integration Overhead Medium (Hypervisor- | Low (Managed EC2 APIs) | Low-Medium (requires
dependent) TA development)

offer a managed and scalable enclave option for mission-critical IaaS platforms with
strong attestation and zero external access. OP-TEE, in contrast, enables lightweight
confidentiality at the tactical edge and supports sovereign hardware deployments in
environments where cloud connectivity is intermittent or restricted.

For the OmniAware platform, all three TEEs are architecturally relevant. SEV-SNP
is leveraged in sovereign cloud workloads where hypervisor trust cannot be assumed.
AWS Nitro Enclaves provide a flexible runtime for telemetry processing and redac-
tion pipelines with managed attestation capabilities. Jetson OP-TEE secures field-level
inference tasks on NVIDIA-based edge devices used in PHM and CIVS contexts.

Design decisions regarding the integration of TEEs into the OmniAware architecture
were guided by three principal requirements:

* Layered Trust Enforcement: Using NSV-6 state transitions, the architecture im-
plements remote attestation sequences during workload initialisation (e.g. via
SPIFFE/SPIRE). These ensure that only verified workloads receive cryptographic
material (e.g. via Vault or KMS).

¢ Policy Mapping: In NSV-4a, service policies define enclave placement rules based
on classification, domain ownership and encryption strength. For instance, C5-
classified workloads must run on attested hardware with external visibility dis-
abled.

¢ Assurance Monitoring: In NPV-3, enclave instantiation events, attestation responses
and cryptographic operations are logged to a provenance engine that validates
compliance with NATO D32 fallback assumptions [20].

As highlighted in NATO D32 (AC/322-D(2021)0032-REV1-U), Security Enforcing
Services (SES) such as TEEs must provide robustness, fallback behaviour and verifiable
enforcement of constraints such as enclave sealing, boot integrity and identity scope
isolation. For example, the SES design rules SC-AIS-05-04-NR to -07-NR define expec-
tations around enclave degradation resistance, rollback recovery and environmental
assumptions [20].

The OmniAware architecture accommodates these SES-level constraints by enforcing
key lifecycle boundaries and fallback protocols across all supported TEEs. Should an
enclave fail attestation or enter a degraded state, cryptographic key material is withheld
and downstream dataflows are automatically blocked via sovereign policy enforcement
(SF7) and runtime monitors.

This tightly integrated approach ensures that all workloads — whether cloud-
based, fog-deployed or edge-embedded — execute within a coherent, verifiably trusted

76

3.3 CONFIDENTIAL COMPUTING

runtime that satisfies both operational and regulatory expectations across NATO, BSI
and hyperscaler compliance frameworks.

While TEEs represent the central enforcement mechanism for data-in-use protection,
the overall security architecture of the OmniAware platform is supported by a set of
complementary measures that ensure compliance, observability and operational control
across all lifecycle stages. These mechanisms are aligned with the security objectives
defined in NATO D32 [20], BSI C5 [11] and hyperscaler-specific best practices [81].

Key Lifecycle and Rotation Strategy To uphold cryptographic hygiene and prevent
long-lived key misuse, all data encryption keys, certificate chains and signing secrets are
subject to mandatory lifecycle policies. The platform integrates AWS Cloud Hardware
Security Module (CloudHSM) and multi-account KMS key segregation. Key rotation
intervals, access control and key material destruction are governed by sovereign policy
engines and logged in a centralised audit trail as required by NPV-3.

Ingress Protection and TLS Enforcement All external interfaces are secured through a
layered perimeter defence architecture including API Gateway (GW), network firewalls,
Web Application Firewall rules and optional integration with AWS Shield Advanced.
Mutual TLS (mTLS) is enforced for service-to-service communication, with root-of-trust
anchored in AWS Certificate Manager (ACM)-managed certificates. API schemas and
payload validation routines are integrated into zero-trust boundaries.

Runtime Threat Detection and Vulnerability Monitoring Continuous security posture
validation is achieved via runtime telemetry from Amazon Inspector, Security Hub and
GuardDuty. These tools scan for vulnerability exposure (e.g. in container images or
Lambda deployments), monitor abnormal execution patterns and propagate findings into
the NSV-6 state machine, allowing for policy-bound remediation or enclave revocation.

Auditability and Forensic Traceability All critical security operations — such as
key access, attestation results, trust policy violations and classification transitions —
are logged via CloudTrail and exported to a dedicated audit account. This log stream
is standardised for Security Information and Event Management (SIEM) integration
and supports evidence preservation in the context of NATO forensics and compliance
procedures.

Data-at-Rest Encryption and Labelling In addition to enclave memory encryption,
persistent data is secured using Server-Side Encryption with Key Management Ser-
vice SSE-KMS, classification-bound access policies and object-level metadata labelling
(e.g. NATO-restricted, public, redacted). Data lake partitions, imagery buckets and struc-
tured datasets are bound to STANAG 4774 /4778 policies and checked at ingestion and
access time.

Cross-Domain Role Isolation and Least Privilege Design System accounts are split
into dedicated security domains (e.g. ingest, datalake, audit, output) to support workload
isolation and compliance with NATO cross-domain execution policies. Role-based access
is enforced via least-privilege identities, scoped session permissions and dynamic role
assumption mechanisms (e.g. via OIDC tokens or federation brokers).

77

ARCHITECTURE AND DESIGN

Zero Trust API Control and Federated Identity The platform integrates a multi-level
API GW for enforcing zero-trust control across all ingress and internal interfaces. Identity
validation is performed using a federated trust broker compatible with SAML/OIDC,
ensuring authenticated and classified role propagation across national domains. All data
flow interactions are evaluated against sovereign rules via a policy enforcement engine
(SF7), which applies runtime decisions and logs provenance in SF6.

Secure Metadata and Provenance Infrastructure To guarantee data integrity and
traceability, all mission-critical metadata (e.g. classification labels, data source, encryption
state, processing history) is tracked using a distributed metadata management system.
These metadata records feed the platform’s audit backbone and enable cross-domain
policy enforcement, redaction tracking and classification processing — particularly
within the CIVS and PHM service chains.

Taken together, these additional security controls reinforce the platform’s TEE-
centric foundation and demonstrate the maturity and mission-readiness of the Om-
niAware architecture. While they are not all elaborated individually in the following
sections, their presence underpins key capabilities for compliance, resilience and zero-
trust enforcement.

The architectural embodiment of these controls is formalised across selected NAFv4
views — most notably NSV-4a (Service Policy), NSV-6 (System States), NPV-3 (Progress
Assessment) and NSOV-3 (Security Services). Where appropriate, representative exam-
ples are highlighted to illustrate foundational design principles. However, the primary
focus of the following section remains on the Trusted Execution Environment (TEE)
strategy as the core enforcement model for secure and sovereign workload execution.

3.3.2 Trusted Execution Environment Implementation

The integration of Trusted Execution Environments (TEEs) within the OmniAware plat-
form adheres to a design methodology aligned with selected viewpoints of the NAFv4.
Central to this approach are the architecture views NSV-4a (Service Policy), NSV-6 (Sys-
tem States) and NPV-3 (Progress Assessment), each capturing a specific facet of the
system’s security architecture, trust lifecycle and compliance instrumentation.

The NSV-4a (Service Policy) encapsulates the rules governing enclave placement,
workload trust domains and classification boundaries. In accordance with NATO mod-
elling guidelines [74], all mission-sensitive workloads bearing NATO-restricted classifica-
tion must execute within TEE-secured environments. The model formalises constraints
such as:

* No execution without successful remote attestation.

* Key release only if enclave state and measurement hash are verified.

These policy rules are enforced through sovereign orchestration agents and policy-
bound scheduling engines that govern workload deployment across cloud and fog
infrastructures.

Given the extensive service portfolio of the OmniAware platform, this model delib-
erately narrows its focus to a critical architectural excerpt: the PHM Landing Zone and
its policy enforcement mechanisms for classified telemetry. A Landing Zone (LZ) refers

78

3.3 CONFIDENTIAL COMPUTING

to a pre-configured, secure and governed cloud environment that enables compliant
deployment of mission workloads. Typically, it includes multi-account structures, cen-
tralised audit logging, identity federation, encrypted networking and policy enforcement
mechanisms. In the context of AWS, an LZ represents the baseline governance perimeter
for infrastructure-as-code rollouts and zero-trust control domains [30].

OmniAware: NSV-4a - PHM Landing Zone, Attestation Enforcement Zone e
SCO_PHM LZ T S8 SPIRE O
Verifier
Attestation- B S9_Vault Key O SF18_Mission Q
bound Key [T TR R e S Controller _— Data
Release Classifier

Figure 3.18: NSV-4a - PHM LZ Policy Enforcement

As shown in Figure 3.18, the PHM LZ acts as the sovereign ingress interface for
telemetry that has passed upstream validation. At this stage, service-level policies enforce
classification-aware workload gating, cryptographic key protection and authorisation.
These controls are rooted in Confidential Computing principles and implemented via a
trust pipeline built on remote attestation and policy-bound key management.

Incoming workloads are executed as TEE-protected virtual machines on fog infras-
tructure supporting SEV-SNP. Prior to decryption or processing, the system initiates a
full remote attestation via SPIRE, verifying enclave measurement, identity and integrity.

Upon successful verification, HashiCorp Vault releases decryption keys only to
those workloads whose attested identity matches a mission-bound allowlist. This ensures
that only authorised and cryptographically validated services may access or persist
sensitive telemetry.

The key model elements in this architecture include:

¢ Application Component: PHM LZ, responsible for secure intake and contextual
decryption of mission telemetry.

¢ Application Function: Mission Data Classifier, enforcing classification- and
tenant-aware routing.

* Policy Element: Attestation-bound Key Release Policy, ensuring enclave trust
is validated before any key material is issued.

* Supporting Services: SPIRE Verifier and Vault Key Controller, together en-
forcing policy-driven runtime validation.

The selection of the PHM LZ as an illustrative example is grounded in its archi-
tectural role: it marks the point at which encrypted mission data intersects with policy
enforcement and classification compliance. Moreover, it demonstrates how enclave-
based services can be integrated with remote attestation workflows to realise sovereign,
zero-trust access control.

79

ARCHITECTURE AND DESIGN

While the view captures only a minimal slice of the overall platform, it effectively
illustrates the application of NAFv4-conformant policy enforcement—spanning identity-
based decryption control, attestation-gated key release and classification-aware workload
orchestration. Further NSV-4a models (e.g. for downstream analytics or audit log
protection) could be constructed in similar fashion but are excluded due to scope
limitations.

This architectural configuration exemplifies a key assurance strategy for next-
generation mission systems: trust must not be statically declared but dynamically derived
from runtime identity, enclave measurement and policy context. By implementing these
verifications at the point of data landing, OmniAware enforces both sovereign policy
intent and compliance with NATO data protection directives [42], [43].

To capture the dynamic trust lifecycle of secure workloads, the NSV-6 view for-
malises the system state transitions that govern enclave execution, integrity validation
and policy-compliant key usage. Specifically, this model describes the runtime phases a
TEE-protected workload must traverse, enforcing cryptographic controls and telemetry-
bound verification checks within the PHM LZ (cf. NSV-4a). These transitions are critical
to ensuring that decryption and execution only occur within verified enclave configura-
tions.

Figure 3.19 illustrates the PHM LZ System State Transition Pipeline for trusted
enclave-based telemetry workloads. The state model describes how secure workloads
are instantiated, attested and executed on SEV-SNP-enabled fog infrastructure.

OmniAware: NSV-6 - PHM Landing Zone, System States BEa
SS1_Untrust 1O SS2_Enclave 1O SS3_Remote 1D SS4_ Key DO SS5_Trusted 1D
ed — Instantiation — Attestation ——succeeded —» Release —> Execution

Initialisation

T

failed

Figure 3.19: NSV-6 - PHM LZ System State Lifecycle

The illustrated model defines the following state transitions:

® Untrusted Initialisation: The workload is launched in an unverifiable state,
encompassing bootloader, hypervisor and OS setup.

* Enclave Instantiation: The enclave context is provisioned with measured con-
figuration parameters (virtual Secure Processing Layer (vSPL), memory layout,
policy fingerprint).

* Remote Attestation: The enclave submits a cryptographic attestation via
SPIFFE/SPIRE, verifying code integrity, configuration and identity.

* Key Release and Policy Enforcement: The attestation is evaluated against a
mission-bound allowlist. Only upon successful validation does the Vault Key
Controller issue the decryption keys.

® Trusted Execution and Audit Logging: If validation is successful, the workload
decrypts mission telemetry and transitions into a verified enclave state. Audit trails
are continuously exported to immutable storage.

80

3.3 CONFIDENTIAL COMPUTING

The diagram also incorporates a conditional feedback loop to represent policy-based
rejection: should attestation fail (e.g. misconfigured state or unknown fingerprint), the
workload reverts to S51_Untrusted Initialisation and no cryptographic material is
released. This fallback pathway reflects NATO D32-mandated attestation policies [43].

Although the modelling environment does not natively support System State con-
structs, this thesis adopts the Application Event element as a semantic workaround to
represent system states. This modelling choice preserves the logical integrity of state
transitions while maintaining consistency with the NAFv4 meta-model implementation.

The use of NSV-6 for modelling the PHM LZ lifecycle tightly integrates with
the enforcement logic presented in the NSV-4a service policy. Together, they establish
runtime governance for all telemetry workloads and provide the operational anchor
point for subsequent validation logic, as discussed in the NPV-3 view.

The NPV-3 view models the telemetry-driven compliance assessment infrastructure
responsible for monitoring the operational integrity of TEE-protected workloads across
the OmniAware platform. It acts as a continuous evidence stream for forensic inspection,
runtime validation and regulatory attestation. The view is tightly integrated with the
enclave lifecycle defined in NSV-6, ensuring that each system state transition — such
as remote attestation, key release and trusted execution — is observable, verifiable and
policy-evaluable. By formally integrating the audit control logic within the NPV-3 view,
this model operationalises the concept of Progress Assessment beyond static compliance
reports, embedding enforcement policy directly into telemetry runtime transitions.

Key metrics are extracted via telemetry services and encompass:

* Enclave Measurement State: Captures integrity measurements and configuration
metadata during runtime.

¢ Attestation Events: Logs evidence and response chains for VCEK- or Nitro-based
remote attestation.

¢ Key Access Events: Records access and issuance of secrets, gated by policy evalua-
tion.

¢ Policy Deviations: Detects and flags deviations such as enclave reinitialisation,
expired attestations or denied key releases.

All collected events are committed to a tamper-evident, immutable audit log, en-
abling compliance verification against frameworks such as BSI €5 and ISO/IEC-27001.
These logs are structured and indexed for post-mission review, automated alerting
and cross-domain traceability, supporting both sovereign and coalition-level reporting
requirements.

The audit pipeline is anchored within the PHM Audit Account, a dedicated multi-
account configuration with separate telemetry ingestion, metadata tagging and com-
pliance logging services. To ensure workload-level provenance, metadata — such as
mission ID, classification scope and node identity — is enriched via runtime attributes
and validated through signature verification. Where applicable, Zero Trust policy engines
are used to trigger alerts, isolate enclaves or revoke credentials upon policy violation
detection.

By formalising operational oversight as an integral part of the deployment archi-
tecture, NPV-3 ensures continuous situational awareness and mission compliance —
not only during but also after enclave execution. This aligns with directives defined in

81

ARCHITECTURE AND DESIGN

NATO AC322D(2021)0032-REV1 and supports proactive threat detection, auditability
and forensic accountability across cloud, fog and tactical infrastructure layers.

The NPV-3 view captures how this telemetry is evaluated within an audit and policy
enforcement framework. Each state transition (e.g. Attestation + Key Release) is tied
to an attestation verdict, policy check and cryptographic validation result. Deviations
from defined workload policies (e.g. enclave mismatch, timing irregularities, geographic
dislocation) trigger audit events and telemetry quarantine.

OmniAware: NSV-3 - PHM Ingest, Progress Assessment Ba
SCI_PHM £]
Audit
PE1_Compli 77 SF6_Audit/Pr () SF7_Sovereig ()
ance Audit <—————= ovenance -«-—-—- n Policy

Policy Service Enforcement

Figure 3.20: NPV-3 — PHM Landing Zone, Progress Assessment

Figure 3.20 depicts the compliance audit service implemented within the PHM
landing zone. This architectural view illustrates how compliance logic is enforced at the
telemetry persistence boundary using runtime logging and attestation-bound provenance
extraction. The central Audit/Provenance Service (SF6) orchestrates log generation,
metadata tagging and event forwarding based on input from policy evaluation layers.

The Sovereign Policy Enforcement function (SF7) provides attestation-gated trig-
gers that determine which events must be captured and evaluated. These two func-
tions are semantically bound to the PE1_Compliance Audit Policy, modelled as a
Constraint, which governs classification-aware forensic inspection. The Compliance
Audit Policy defines the enforcement criteria used to validate attestation events, key re-
leases and telemetry anomalies. The resulting data is persisted within the SC1_PHM_Audit
component and constrained by said policy.

Due to modelling environment constraints, this model leverages a Constraint
object in place of a dedicated Policy Element, as the ArchiMate language does not
define native first-class elements for dynamic runtime enforcement logic. Nevertheless,
this construct semantically captures the enforcement logic derived from mission-specific
audit constraints and zero-trust telemetry validation.

Each attestation-gated transition — introduced in NSV-6 — is monitored for policy
compliance and any deviation triggers enforcement actions defined in the associated
PE1_Compliance Audit Policy. This enables a real-time progress evaluation of trusted
workloads, transforming audit services into an integral component of runtime policy
assurance and sovereign mission telemetry governance.

Cross-Cutting Controls: Remote Attestation and Key Enforcement
Remote attestation is mandatory for all workloads processing classified mission data. It
is anchored in hardware-level identity (e.g. SEV-SNP VCEK, Nitro Attestation Document)
and validated against a sovereign or cloud-native policy engine. Secrets (e.g. TLS keys,
access tokens, inference weights) are withheld until the attestation succeeds. Sovereign
deployments use HashiCorp Vault with policy-tied allowlists, while hyperscaler envi-
ronments integrate AWS KMS to restrict access to validated workloads only.

82

3.4 INTERFACES

Interoperability and Portability of Trust
In heterogeneous mission environments spanning sovereign cloud, fog and edge, work-
load portability is essential. This requires consistent remote attestation workflows,
harmonised identity frameworks and trust decoupling across TEE and CPU architec-
tures. When enclave migration is not feasible, Zero Trust proxies are introduced to
preserve verification boundaries and enforce key release conditions — all of which are
reflected in the NPV-3 provenance layer.

Platform Policy: Mandatory Use of SEV-SNP for High-Assurance Workloads
OmniAware mandates that all classified workloads operate exclusively on SEV-SNP-
enabled hosts to unify key lifecycle enforcement. Each state transition is cryptographi-
cally anchored using nested paging, platform-diffie-Hellman key binding and verified
VCEK signatures. This ensures consistent runtime posture across deployments, reduces
policy fragmentation and simplifies trust enforcement even across federated environ-
ments.

¢ Memory encryption and integrity via Nested Paging.
¢ Secure VM launch using Platform Diffie-Hellman Key (PDHK) exchange.

¢ Cryptographic remote attestation reporting using VCEK and CEK identity chains.

Implication for Compliance and Auditability
Audit logs tied to state transitions are stored immutably and exported to a mission-
bound audit controller. These logs support continuous compliance validation against
regulatory baselines such as BSI C5 and ISO/IEC 27001 and are referenced in post-
mission forensic reviews. In edge scenarios lacking full enclave support, deviations
(e.g. fallback to telemetry-only mode) require risk acceptance and attestation override
authorisation.

From a modelling perspective, this view links NSV-6 state telemetry with compliance
enforcement and post-execution validation. It provides the structural backbone for
runtime monitoring, cryptographic auditability and trust propagation across sovereign
and coalition-controlled execution zones.

In summary, confidential computing constitutes a foundational design pillar of the
OmniAware architecture. Through the structured implementation of enclave-based trust
workflows, remote attestation pipelines and policy-bound key enforcement, this chapter
has demonstrated how mission workloads can be securely orchestrated, auditable and
sovereign — even across untrusted or coalition environments. The following sections
build upon this trusted computing layer to address further system concerns such as
telemetry portability, policy orchestration and cross-domain workload integration.

3.4 INTERFACES

Summary: The final section of Chapter 3 introduced the design of core interfaces under-
pinning interoperability within the PHM deployment context. While the implementation
remains limited to selected endpoints, the model captures key interface roles between
data producers, processing components and consumer services. Exemplary interfaces
include telemetry ingestion, secure secret exchange and attestation token validation. The
design considerations were guided by the principles of modularity, secure data flow
and future extensibility toward multi-domain integration. This section concludes the

83

ARCHITECTURE AND DESIGN

architectural composition by ensuring interface-level connectivity across the previously
introduced components. In modern mission platforms such as PHM, interfaces are
not mere integration artefacts, but serve as critical enforcement points for classifica-
tion, attestation and zero-trust control. Each interaction between workloads, services
and trust-enforcing components must be explicitly modelled, as every interface may
constitute a potential attack surface. To illustrate the intersection of system design
and policy enforcement within defence-grade architectures, this thesis models a single
security-relevant interface as a representative example. Further interfaces may be added
depending on available resources but are not part of the architectural core.

In alignment with the NAFv4, this section introduces three formally defined view-
points:

e NSOV-2 — Describes the intended service behaviour and semantic interface
characteristics.

¢ NSV-2 — Identifies the interface within the system architecture and its associated
service functions.

e NSV-4c¢ — Specifies interface-related policy constraints andre additional technical
enforced security measures.

The PHM Ingest Gateway represents a secured external service interface from vehicles or
edge devices responsible for receiving and validating classified telemetry data. As the
system’s ingress point for mission-critical inputs, it plays a central role in enforcing the
platform’s zero-trust architecture.

¢ Interface Type: External Service Interface

* Purpose: Secure reception of mission telemetry and enforcement of classification
and access policies

¢ Security Characteristics:

— Mutual TLS authentication for all inbound traffic
— Structured metadata validation (e.g. NATO classification tags)

— Policy-based routing and conditional data rejection

From an architectural perspective, the interface is modelled in the NSV-2 view via
the Confidential Data Ingestion service function. It acts as a mediation layer between
external data sources and internal analytic pipelines, ensuring compliance with trust
and classification constraints.

The NSOV-2 view specifies functional behaviours such as validation failure modes,
exception handling and guaranteed schema conformity. Complementing this, the NSV-4c
view defines concrete policy constraints, including transport layer encryption require-
ments and enforced metadata schemas for classified data.

The focused modelling of a single secured interface serves as an architectural
exemplar demonstrating NAFv4-compliant interface design in cloud-native defence
systems. The PHM Ingest Gateway highlights how zero-trust communication patterns
and metadata-aware enforcement can be implemented at the interface level.

Depending on time and resource constraints, a secondary interface such as the
Attestation Key Gate may be introduced at a later stage. However, this thesis prioritises a

84

3.4 INTERFACES

single, methodologically complete example to ensure architectural clarity and relevance
to the overall PHM use case.

Interfaces in defence-grade platforms such as OmniAware can be broadly categorised
as external, internal or context-aware. External interfaces include secure API gateways
such as the PHM Ingest Gateway, while internal interfaces typically link key components
like SPIRE, Vault and classified workloads. In context-aware use cases, e.g. within
CIVS, metadata tagging interfaces support classification enforcement and downstream
auditability.

This guidance is exemplified by the explicitly modelled PHM Ingest Gateway inter-
face, which demonstrates how architecture-level trust principles are operationalised in
practice.

Although only a single interface is fully modelled in this thesis, all security-relevant
interfaces are designed following Security-by-Design principles. These include access
control (e.g. RBAC, ABAC), data classification enforcement (e.g. NATO-Restricted) and
validation logic via schema-based verification (e.g. JSON, Protobuf). Authentication and
authorisation mechanisms rely on SPIFFE identities and token-based systems, ensuring
confidentiality and auditability across all interface endpoints.

This focused yet methodical treatment ensures that even minimal interface mod-
elling aligns with the system’s overall zero-trust posture, providing clarity for down-
stream implementation and future extension. For a structured overview of additional
interface candidates that were not fully modelled in this thesis but may be prioritised
for future implementation, refer to Appendix 5 and 6. These tables summarise fur-
ther NSOV-2 service interface concepts derived from the PHM and CIVS use cases
respectively.

The modelling and implementation of secure interfaces in the OmniAware platform
adheres to a number of architecture-level design guidelines, particularly in the context
of NAFv4-based defence systems:

¢ Interface Classification: Interfaces are explicitly distinguished as Service Inter-
faces (NSV-2) or, where applicable, as Application or Technology Interfaces (NSV-3),
depending on their location in the architecture stack and enforcement scope.

¢ Trust Anchors via Interface Policies: Each interface must implement policy-bound
enforcement mechanisms, including mutual TLS, SPIFFE /SPIRE-based workload
identity validation or schema-based contract verification (e.g. JSON schema, Proto-
buf).

¢ Communication Patterns: Interfaces are secured using encrypted ingress/egress
channels (e.g. mTLS) and apply Zero Trust principles for data-at-rest, in-transit
and in-use protection.

¢ Security Contracts: All interface definitions must specify RBAC/ABAC rules,
classification tags (e.g. NATO-Restricted), validation logic and auditability for
policy violations.

¢ NAFv4 Viewpoint Modelling: Interfaces are formally represented and cross-linked
in the architecture using the NSV-2 and NSV-4c viewpoints.

These architectural patterns ensure that each interface acts not only as a commu-
nication mechanism, but also as an enforcement point for confidentiality, classification

85

ARCHITECTURE AND DESIGN

compliance and runtime policy validation. This ensures a verifiable and modular modu-
lar trust perimeter within the PHM Landing Zone, demonstrating how mission-critical
enforcement logic can be made explicit and auditable at the interface level.

OmniAware: NSOV-2 - PHM Ingest, Interface Logic By
SC2_PHM =]
Ingest
SII_PHM -O SF1_Confiden ()
Ingest - tial Data
Gateway Ingestion

Figure 3.21: NSOV-2 - PHM Ingest, Service Interface

As illustrated in Figure 3.21, the SI1_PHM Ingest Gateway represents a formal
Service Interface within the NSOV-2 viewpoint. This interface acts as the trusted
ingress point for all mission-critical telemetry flows within the PHM use case. Its
architectural role is twofold: (1) it enforces inbound interface-level security guarantees
(e.g. TLS, metadata validation) and (2) it bridges the externally-facing ingestion logic
with internal platform services.

The interface is logically served by the function SF1_Confidential Data Ingestion,
which handles validation, decryption and semantic classification of received telemetry.
This function ensures the correct application of downstream policies such as access con-
trol, tagging and audit enforcement. According to ArchiMate semantics, this relationship
is modelled via a serves association.

Additionally, the interface is semantically associated to the service contract SC2_PHM
Ingest, which defines the architectural guarantees, behavioural expectations and trust
boundaries required for the ingestion process. The contract ensures that only metadata-
conformant, attestation-bound and authenticated requests may traverse the interface. It
acts as the formal service logic definition within the NSOV-2 model.

In summary, this model reflects a minimal but security-critical subset of interface
logic. It demonstrates how service functions (SF1) expose interface endpoints (SI1) in
accordance with a defined contract (SC2), thereby ensuring modular traceability and
runtime policy enforcement in line with NAFv4-compliant design logic.

Figure 3.22 models the NSV-2 interface logic of the PHM Ingest Gateway, represent-
ing a secured and policy-bound entry point for mission telemetry. The model focuses on
the binding between the externally exposed service interface SI1_PHM Ingest Gateway,
the functional service logic SF1_Confidential Data Ingestion and the implementing
application and service components.

At the centre of this view lies the Service Interface SI1_PHM Ingest Gateway,
which is served by the internal logic of SF1_Confidential Data Ingestion. The service
logic enforces validation, classification compliance and policy-based routing. These
behaviours are realised within the Application Component AC1_PHM Ingest Handler,
which is directly assigned to the function and provides the concrete implementation logic
for zero-trust data ingestion.

To explicitly separate architectural responsibilities, this model introduces a second
internal Service Component, SC2_PHM Ingest. It captures the structural aggregation

86

3.4 INTERFACES

OmniAware: NSV-2 - PHM Ingest, Resource Flows B5
AC1_PHM =] SF1_Confiden [
Ingest _— tial Data
Handler Ingestion
Sor 20TV | —— > SIL_PHM -O
Ingest _— Ingest
Gateway

Figure 3.22: NSV-2 - PHM Ingest, Resource Connectivity

of the interface layer, acting as the architectural anchor point for workload-bound
interface policies and policy enforcement mechanisms. While both AC1 and SC2 realise
parts of the same overall capability, the separation reflects modelling constraints in
Archi, where Application Components and Service Components must be instantiated
as distinct element types. This decision ensures consistency with NAFv4-aligned tool
support, even in the absence of native multi-role components.

The SF1 service logic is served into the interface SI1, enabling structured inbound
telemetry flows. The SC2_PHM Ingest component orchestrates this process by serving
the exposed interface. Semantically, this connection symbolises the secure exposure of
mission-relevant service logic to authenticated upstream systems. A further association
between AC1 and SF1 underlines their structural linkage without conflating their distinct
modelling semantics.

This focused NSV-2 representation illustrates how a single interface may be embed-
ded within a secure service chain while remaining decomposable across component and
service layers. It highlights the architectural principle that every security-relevant interface
must be traceably realised within the functional service landscape, preserving compliance,
traceability and implementation integrity.

Unlike NSOV-2, which emphasises the behavioural semantics and operational
purpose of the interface from a service function perspective, the NSV-2 view captures
the resource flow between architectural building blocks. Here, interfaces are not merely
abstract contracts but are tightly linked to the application and service components
responsible for their realisation. The service is thus contextualised within the deployment
architecture, making NSV-2 essential for understanding how logical interface logic is
operationalised as part of the platform’s concrete service landscape.

Figure 3.23 presents the NSV-4c service interaction model for the SI1_PHM Ingest
Gateway interface. The view highlights the interaction between service interfaces and
interface-relevant security policies, describing the non-functional requirements that
govern the classification-compliant and trust-preserving operation of the system.

This model defines three policy artefacts that influence the security posture of the
ingest interface:

* PE2_TLS Mutual Authentication, ensuring bidirectional authentication via mTLS.

® PE3_Classification Tag Enforcement, enforcing structured classification of in-
bound mission telemetry via NATO labelling schemes.

87

ARCHITECTURE AND DESIGN

OmniAware: NSV-4c - PHM Ingest, Interactions BEa
SI1_PHM O
Ingest
Gateway
T T T
I 1 I
I 1 I
I 1 I
I 1 I
7 1 \
T T I ST T N
| I |
1 1 1
1 1 1
v v v
PE2_TLS /7 PE3_Classifi 77 PE4_Routing /77
Mutual cation Tag and Access
Authenticati Enforcement Control

Figure 3.23: NSV-4c - PHM Ingest, Service Interactions

* PE4_Routing and Access Control, enabling policy-based rejection, routing or
redirection based on classification level and contextual metadata.

These policies are formally modelled as Constraint elements and semantically
linked to the SI1 service interface using the influenced by relation. Although this
deviates from the idealised constrained by relation found in conceptual modelling, the
ArchiMate language does not provide a native construct for semantic policy constraints
on service interfaces. The chosen workaround aligns with the methodological intent of
NAFv4-compliant NSV-4c¢ artefacts, which focus on explicitly declaring the interface-
level impact of runtime policies.

The modelling rationale stems from the NAFv4 definition of NSV-4c, which empha-
sises the external observable interaction behaviour of services under policy influence.
In zero-trust architectures, this includes authentication enforcement, schema validation
and access control prior to function execution. Therefore, policies in NSV-4c are not
implemented at the function or component layer, but are exposed and enforced at the inter-
face boundary - where adversarial interaction may occur and where runtime rejection
or gating mechanisms are required.

The SI1_PHM Ingest Gateway interface thus serves as the policy enforcement fron-
tier, integrating classification constraints, trust anchors and zero-trust communication
patterns at the system’s entry point. The use of the influenced by relation is a deliberate
modelling choice to preserve semantic fidelity while operating within the constraints of
the ArchiMate metamodel.

The interface design presented in this section, exemplified by the SI1_PHM Ingest
Gateway, reflects a methodologically sound and security-conscious approach to system
interfacing within the OmniAware architecture. It demonstrates how a semantically
traceable interface can be derived from capability-based planning and refined through
service and component modelling, in full alignment with the NAFv4 methodology. The
interface itself is designed to support zero-trust communication, remote attestation and
policy-based routing of telemetry data towards confidential computing environments —
all of which are indispensable features in mission-critical military scenarios.

While the current architectural modelling ensures compliance, traceability and
conceptual integrity, it is important to acknowledge that the actual implementation
of such interfaces may require further elaboration beyond what is currently specified.
Specifically, aspects such as precise protocol bindings (e.g. gRPC, Representational State
Transfer or message queues), schema validation (e.g. JSON Schema, Protobuf) and the
handling of transport-layer exceptions or retries must be addressed during software
implementation. Similarly, integration with identity providers (e.g. SPIFFE/SPIRE), key

88

3.4 INTERFACES

management systems (e.g. HashiCorp Vault) and runtime policy engines (e.g. Open
Policy Agent) requires concrete configuration artefacts and automation logic, typically
expressed through IaC or declarative Kubernetes manifests.

In essence, the modelling of interfaces — while grounded in formal system ar-
chitecture — should be seen as a launchpad rather than an endpoint. The design of
the ST1_PHM Ingest Gateway provides a validated architectural anchor that ensures
semantic consistency and security alignment. However, actual deployment will likely
necessitate iterative refinement and expansion of the interface specification, particularly
as additional dependencies and implementation constraints emerge. These may include
telemetry data contracts, dynamic access policies, integration test frameworks or logging
and observability mechanisms tailored for defence-grade assurance.

Future work could thus focus on the complete operationalisation of this interface
within a prototype system, supported by continuous validation against compliance arte-
facts, threat models and stakeholder requirements. By formalising interfaces as integral
parts of the architecture rather than isolated technical details, this thesis contributes
a scalable and security-aligned blueprint for data-centric service integration within
federated defence environments.

This chapter has demonstrated how the architectural principles of modularity,
policy enforcement and zero-trust resilience can be systematically realised through
NAFv4-conformant design patterns. Using the PHM scenario as a guiding use case,
selected architectural artefacts such as NSV-4a, NSV-6, NPV-3 and NSOV-2 have been
modelled to illustrate the interplay between secure execution environments, policy-
driven trust enforcement and interface specification. Together, they provide a high-
assurance blueprint for mission-critical telemetry flows in sovereign cloud environments.

While the architectural views presented in this chapter establish a rigorous founda-

tion, they deliberately prioritise traceability and security semantics over full deployment
coverage. The implemented subset of the architecture is designed to support forward
compatibility with the next stage of development — the implementation and validation
of a Minimum Viable Product (MVP).
In the following chapter, selected aspects of this architecture will be realised within
a functioning prototype. The implementation will focus on enabling attested enclave
execution, policy-bound key management and telemetry interface orchestration. In
doing so, it aims to translate architectural integrity into deployable, measurable and
operationally meaningful system components.

89

IMPLEMENTATION

4.1 DEPLOYMENT
4.1.1 Deployment Strategy and Infrastructure Automation

The OmniAware platform is deployed within the AWS Public Cloud to leverage its global
infrastructure, high availability and scalable architecture patterns. During implementa-
tion, two distinct AWS account environments were provided by Capgemini to separate
experimental prototyping from production-grade deployments: one provided by the
AWS Guild Germany and one set of accounts managed by Capgemini’s internal GroupIT
(GIT) organisation.

The AWS Guild account constitutes a flexible, standalone AWS account that is
managed within the AWS Guild’s own budgetary framework. It was primarily used
to design, implement and evaluate PoC components such as secure ingest APIs, Vault-
based JWT token validation and the underlying confidential computing infrastructure.
Due to limitations in the availability of AMD SEV-SNP, the deployment region for this
account was set to eu-west-1 (Ireland), which — alongside us-east-2 (Ohio) — is
currently one of the only supported regions for SEV-SNP workloads [63]. This ensured
that the early-stage architecture could be validated using enclave-based attestation flows.

In contrast, the GIT accounts represent enterprise-managed AWS environments
that are subject to Capgemini’s security and compliance guardrails. They are directly
mapped to the internal project identifier of OmniAware and are linked to dedicated
cost centres for accountability and billing transparency. These accounts are closer to
production readiness and reflect the expected customer deployment context. For the
current MVP, five GIT-managed accounts were used:

¢ OmniAware-Ingest

® OmniAware-Datalake
¢ OmniAware-Security
® OmniAware-Audit

¢ OmniAware-Consumer

The deployment region for these accounts was eu-central-1 (Frankfurt), which
offers the most comprehensive set of AWS services within the EU and ensures close
alignment with European data protection regulations. While eu-central-1 does not
yet fulfil all requirements for strict sovereign data residency, it was selected to support
jurisdictional alignment and to enable the application of mission-relevant compliance
baselines, such as ISO/IEC 27001, Center for Internet Security (CIS) Benchmarks and
WATF principles. The first ESC-compliant region in Germany is anticipated to be es-
tablished in the state of Brandenburg, which may serve as the target zone for future
production deployments once regional feature parity is achieved [64].

All components of the deployed architecture are provisioned via Infrastructure-as-
Code (IaC) using AWS CloudFormation. This guarantees repeatability, traceability and

91

IMPLEMENTATION

integrity of the deployment pipeline across development and operational stages. Each
[aC template integrates compliance logic such as policy constraints, tag enforcement,
and environment scoping. Full templates are included in Appendix 6.2.

IaC Framework Selection and Automation Strategy. Modern cloud-native platforms
require infrastructure provisioning to be reproducible, traceable and policy-compliant
by design. In this context, the selection of an Infrastructure-as-Code (IaC) framework
becomes a critical architectural decision. Various frameworks exist, including Terraform,
Pulumi, Helm and AWS CloudFormation — each with distinct trade-offs in terms of
lifecycle integration, compliance alignment and operational security.

Terraform is widely used and supports multi-cloud orchestration, but introduces an
external state backend and an execution context decoupled from the AWS control plane.
This requires additional components such as remote state locking, backends (e.g. S3 with
DynamoDB) and external orchestration logic. Pulumi introduces support for modern
programming languages but suffers from similar external execution constraints. Helm,
while natively integrated with Kubernetes, is declarative and release-oriented, but not
suited for managing low-level infrastructure resources beyond container deployment
layers.

By contrast, AWS CloudFormation operates natively within the AWS control plane.
It provides tight integration with internal security services (such as IAM), enforces policy-
linked guardrails, supports scoped parameterisation and allows direct referencing of
service-linked roles. Its tight coupling with AWS Config, Audit Manager and Security
Hub enables context-aware remediation and compliance validation during deployment.

These capabilities are particularly valuable for mission-critical systems with strict
security requirements and air-gapped operating conditions. For these reasons, CloudFor-
mation was selected as the [aC framework for this thesis, as it ensures full reproducibility,
avoids external orchestration surfaces, reduces supply chain exposure and supports
WAF-aligned governance principles throughout the deployment lifecycle.

CI/CD Integration. To operationalise the deployment process and ensure architectural
reproducibility, a multi-stage CI/CD mechanism based on Bash scripting and CloudFor-
mation orchestration was implemented. The pipeline integrates environment-specific
parameters, template validations and conditional deployment logic to reflect project
stage, target account and region.

Currently, the CI/CD system relies on networked execution from within trusted
development environments, supporting cross-account deployments and infrastructure
initialisation via explicitly defined IAM roles and permission boundaries. While not
yet optimised for full air-gapped operation, the pipeline enforces strict execution roles,
avoids external orchestration layers and supports regional deployments aligned to
internal governance standards.

This strategic setup enables progressive automation of the deployment lifecycle and
lays the foundation for future enhancements, such as full offline support and secure
pipeline containerisation.

4.1.2 Infrastructure-as-Code and Automation Pipelines

At the architectural compliance layer, a modular CI/CD pipeline governs the automated
provisioning, validation and deployment of infrastructure components. The design
follows a lightweight approach based on AWS CloudFormation and cross-account role

92

4.1 DEPLOYMENT

delegation, deliberately avoiding external orchestration platforms and DevOps SaaS
tooling. This ensures controlled execution within trusted environments and minimises
the external dependency surface — particularly relevant in defence-related or classified
settings.

CI/CD Pipeline Design. The implemented CI/CD pipeline is defined as a set of Bash-
based orchestration scripts invoking parameterised CloudFormation templates within
isolated AWS accounts. Role assumptions are strictly scoped via permissions boundaries
and IAM policies, ensuring secure deployment propagation across the defined landing
zone architecture (cf. Section 3.2).

While the current pipeline is not yet designed for fully air-gapped or enclave-
verified execution, it follows clear principles of reproducibility, policy-based validation
and infrastructure provenance. Build and deployment artefacts are version-controlled, pa-
rameterised and injected per execution context (region, account, stage). Manual triggers
ensure developer control over each deployment lifecycle phase.

Strategically, the design reflects a compromise between architectural clarity and
implementation feasibility. It provides minimal yet sufficient automation to support
consistent deployments, without introducing third-party control planes or external
service dependencies. Future iterations may adopt secure runners or confidential build
stages to cryptographically attest deployment provenance (cf. Section 3.2).

Pipeline Stages. The pipeline comprises the following structured execution stages:

* Source and Template Management: Declarative templates reside in version-
controlled Git repositories. Deployment is initiated manually by executing the
CI/CD orchestration scripts.

¢ Runner Invocation: Within each deployment call, environment-scoped parameters
are passed to invoke region-specific CloudFormation stacks using pre-authorised
IAM roles (e.g. AssumeRole with scoped permissions).

¢ Validation and Policy Enforcement: Templates are statically validated before
deployment. Parameter integrity and template consistency are ensured through
script-based checks and naming convention enforcement.

* Orchestrated Deployment: Templates are deployed to their respective landing
zone accounts (e.g. Ingest, Datalake, Audit) using stack-based orchestration logic.

¢ Post-Deployment Integration: Manual post-deployment actions finalise tagging,
CloudTrail enablement and GuardDuty baseline integration. These steps are mod-
ularised for future automation.

93

IMPLEMENTATION

ESe Aws Cloud

Ingest Account

AWS CodeBuiid Project

3. Trigger buld (Stacks and SiackSets deplaymen) [— — —|
I i | | |

[m]
St4cl Stgck

Corporate data

5. Deploy Stacks of
4 templates) 7 account and StackSets
GitHub Enterprise :
Server |

AWS ClougFormation
CodeBuild EC2 Inftances (Runners)

a [s B |
1. s cnanet,crsto PR tc.) OO OO o>
| OO O Oog

StacHs Set Stacks Set Stacis Set

6. Deploy speciic stcks in target account
ume rol

Actos
e Audit Acoount Datalake Account Security Account
o

O O] OICd O 8 o I | o o o
000 000 000 000 ¢ i 0 : O

| sk Stack Stack Stack | i st Stack Stack ! s Stack Stack |

|

AWS CI AWS Cl AWS Ci

Figure 4.1: CI/CD Pipeline for Secure Deployment of Landing Zone Components

As shown in Figure 4.1, the pipeline encapsulates source management, parameter

injection and orchestrated deployment across multiple isolated accounts. It establishes a
coherent foundation for future enhancements — such as build-time attestation, dynamic
policy overlays or zero-trust provisioning stages — without compromising the current
project’s reproducibility or compliance objectives.
Note on Implementation Status. While Figure 4.1 illustrates the strategic CI/CD target
architecture for OmniAware, the current PoC implementation does not yet leverage fully
managed AWS CodeBuild runners or webhook-based integration. Instead, infrastructure
provisioning is performed via parameterised Bash scripts executed manually or from
secure bastion hosts (cf. Listings 4.1.2, 6.2). This approach ensures transparent execu-
tion context and credential control during early-phase deployments, while remaining
consistent with the role assumption, account scoping and landing zone propagation
illustrated in the architectural model. As the platform matures, a transition to managed
runner orchestration is anticipated.

94

4.1 DEPLOYMENT

CI/CD Pipeline Structure. The directory layout of the CI/CD pipeline reflects a
logically structured orchestration architecture that mirrors the scoping of the multi-
account AWS Landing Zone setup. The Git-based repository is segmented into reusable
Bash-based orchestration scripts, such as deploy_stacks.sh, deploy_stack_sets.sh
and deploy_stacks_wrapper.sh, which abstract the deployment logic across different
trust zones. Each script is designed to inject mission-aware deployment metadata and en-
force IAM-scoped identity assumptions via consistent naming, tagging and permissions
constructs.

The core components of the deployment logic are divided into three primary scopes:

* Scoped Execution Contexts: The init_stack.yaml template defines execution
roles with IAM trust boundaries and permission boundaries for both direct stack
deployments and delegated stack set executions (cf. 4.1.2). This initialisation
anchors the role assumption logic that governs the orchestration lifecycle.

¢ Isolated Orchestration Scripts: Wrapper scripts (e.g. deploy_stacks.sh) are de-
signed to operate in tightly scoped identity contexts, typically from bastion hosts or
designated deployment environments. The use of aws sts get-caller-identity
ensures contextual account resolution and prevents misrouting across accounts.
Deployment metadata (e.g. ProjectName, VpcId, Environment) is injected via ex-
ternalised parameters. json files.

¢ StackSet Propagation and Compliance Enforcement: The deploy_stack_sets.sh
script allows for propagation of compliance-critical stacks
(e.g. 10_guardrails.yaml) across multiple accounts using the AWS StackSet ser-
vice. By leveraging scoped delegation roles and predefined trust paths, the design
ensures policy-aligned baseline enforcement from the control plane account with-
out compromising the separation of trust domains.

The deploy_stack_sets.sh orchestration script leverages the native AWS StackSet
service to propagate compliance-critical infrastructure components
(e.g. 10_guardrails.yaml) across all governed target accounts from a central control
plane.

StackSet enables the management of CloudFormation stacks across multiple AWS
accounts and regions from a single administrator account. It supports both self-managed
and service-managed permission models, with the latter enabling delegation via prede-
fined IAM roles. In the current deployment design, StackSets are configured using the
delegated administrator model with scoped identity roles, allowing secure propagation
while enforcing strict cross-account boundaries.

Alternative propagation mechanisms — such as invoking individual stack deploy-
ments via scripting loops or orchestrating through third-party tooling (e.g. Terraform
Workspaces, Ansible Tower or AWS Control Tower) — either introduce external de-
pendencies, increase operational overhead or violate the design principle of scoped
credential delegation. Unlike AWS Control Tower, which provides a fully managed
setup and lifecycle for multi-account environments, the use of StackSet offers greater
flexibility and control. While Control Tower automates account creation and baseline
governance, it enforces a fixed structure and prescriptive workflows. In contrast, StackSet-
based orchestration allows custom stack placement, scoped identity assumptions and
tailored propagation logic — making it better suited for fine-grained, mission-driven
deployments.

95

O 0 N U W N

= = e e e
N U s W N = O

IMPLEMENTATION

The use of StackSet is therefore deliberate and aligned with architectural objectives
such as:

¢ Policy consistency: Governance overlays are deployed uniformly, reducing configu-
ration drift and ensuring compliance with project-wide security baselines.

* Minimal blast radius: Delegation roles constrain the propagation scope, ensuring
that only pre-authorised accounts receive and execute the stacks.

o Compatibility with compliance frameworks: The declarative and centrally controlled
nature of StackSet deployments supports traceability and auditability, which are
critical under frameworks such as C5, TSE-SE and NATO accreditation procedures.

This method offers a robust balance between automation and control, ensuring that
policy-aligned infrastructure components are enforced across the multi-account Landing
Zone without compromising the separation of trust domains or identity integrity.

The orchestration layout aligns with the Landing Zone directory hierarchy intro-
duced in Section 4.1.3, with deployment scripts grouped according to their respon-
sibility and trust scope. Shared deployment artefacts such as init_stack.yaml and
10_guardrails.yaml reside in shared/stacks and shared/stacksets, while regional
execution wrappers such as deploy_stacks-eu-west-1.sh reflect localisation within
the corresponding environment tier.

Implementation Artefacts and Design Decisions. The CI/CD pipeline’s secure and
reproducible behaviour is operationalised through minimal but expressive orchestra-
tion artefacts. The following listings demonstrate two core components: A Bash-based
deployment wrapper for invoking CloudFormation templates within scoped contexts
and an identity template that provisions IAM roles under tightly bound permission
structures.

deploy_stacks.sh
Bash-based wrapper for scoped deployment of parameterised CloudFormation templates
using AWS CLI. Ensures strict account targeting and avoids external toolchain dependencies.

#!/bin/bash

ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
REGION="eu-west-1"

TEMPLATE_FILE="15_cc-vault-poc.yaml"

STACK_NAME="vault-poc-stack"

aws cloudformation deploy \

--stack-name $STACK_NAME \

--template-file $TEMPLATE_FILE \

--region $REGION \

--capabilities CAPABILITY_NAMED_IAM \

--parameter-overrides \
ProjectName=0OmniAware \
Environment=dev \
VpcId=vpc-xXXXXXXX \
AdminRoleName=GuildAdminRole

1

1 This wrapper script deploys parameterised CloudFormation templates into a designated AWS environment
using manually scoped identity context. External runtimes are avoided by invoking AWS CLI locally. This
listing illustrates a concrete Vault PoC instantiation; the script itself supports generalised use.

96

O 0N N U W N

e e
T W N = O

4.1 DEPLOYMENT

The deploy_stacks.sh script exemplifies the platform’s minimalistic orchestration
principle. Rather than relying on fully managed services like AWS CodePipeline, the
approach uses shell-based invocation to maintain fine-grained control over execution
scope, parameter injection and credential context.

By querying the current AccountId at runtime (aws sts get-caller-identity),
the script ensures that deployment is tightly bound to the executing identity and cannot
be misrouted to unintended accounts. The -parameter-overrides section allows full
injection of contextual deployment metadata such as ProjectName, Environment and
VpcId, which aligns each stack to a specific landing zone tier.

This local, parameterised deployment model supports transparency, developer-led
iteration and a clear separation of execution environments without relying on remote
build runners or opaque deployment logic.

init_stack.yaml
Minimal CloudFormation template for establishing permissions boundary, IAM roles and
resource tagging foundation.

Resources:
VaultExecutionRole:
Type: AWS::IAM::Role
Properties:
RoleName: !Sub "VaultExec-${Environment}"
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: Allow
Principal:
Service: ec2.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/AmazonEC2ReadOnlyAccess
PermissionsBoundary: !Ref PermissionBoundaryArn

The init_stack.yaml template establishes the foundational identity constructs
for the deployment lifecycle. It defines a scoped IAM role (VaultExecutionRole) with
explicit trust boundaries and a named permissions boundary reference.

The AssumeRolePolicyDocument enforces identity constraints, allowing only EC2
instances to assume this role. The use of a named permissions boundary—passed as a
parameter—ensures that even future extensions of the policy cannot exceed predefined
limits, preserving least-privilege semantics.

This design minimises the blast radius of potential misconfigurations or lateral priv-
ilege escalation, which is particularly relevant in sensitive multi-account environments
such as those used in the OmniAware landing zone setup. It also supports cross-account
deployment patterns by embedding trust anchors that align with the scoped deployment
permissions invoked in the orchestration script.

Deviation from Target Architecture. While the architecture diagram (cf. Figure 4.1)
illustrates a target deployment model based on AWS CodeBuild and webhook-triggered
pipeline execution, the current PoC implementation does not yet provision a fully
managed CI/CD framework.

IAM roles are defined with scoped permission sets and a permissions boundary to enforce least-privilege
execution. This prevents privilege escalation across landing zone accounts.

97

IMPLEMENTATION

Instead, infrastructure provisioning is operationalised via parameterised Bash scripts
(cf. Listing 4.1.2), executed manually or from controlled environments such as bastion
hosts. These scripts invoke aws cloudformation deploy with environment-specific
overrides and scoped IAM role assumptions, ensuring secure and isolated deployment
logic.

This interim setup offers full transparency and control during the prototyping phase
and lays the groundwork for later transition into managed CI/CD environments. The
architectural consistency of parameter injection, role-based isolation and landing zone
account structure is maintained throughout, enabling a seamless upgrade path toward
CodeBuild-based automation.

The current pipeline implementation was partially provided by a project collaborator. While
foundational scripting and CI/CD orchestration were preconfigured, all environment-specific
adaptations, deployment parameterisation and compliance-aligned execution logic were developed
by the author. These include scoped IAM role assumptions, isolated landing zone targeting and
reproducible deployment primitives for mission-grade environments.

4.1.3 Core Infrastructure Deployment: Landing Zone Foundation

Following validation of the account-wide initialisation phase, the core infrastructure of
the Landing Zone is deployed through a structured sequence of modular [aC compo-
nents version-controlled within the project’s GIT repository. Each stack defines a scoped
and reproducible infrastructure primitive that collectively establishes the operational
substrate for mission-grade workloads. The deployment pipeline integrates compliance-
focused parameterisation, context-aware role assumptions and tagging conventions for
consistent policy enforcement across all trust domains.

Landing Zone Structure. The layout of the 05_iac directory within the GIT setup
mirrors the logical structure of the AWS multi-account Landing Zone. Account-specific
components are mapped to subdirectories such as audit/, datalake/ or ingest/, reflect-
ing the distinct organisational units of the landing zone. Shared or cross-account logic
resides in shared/, including global control layers such as init/ and guardrails.yaml.
This separation enforces a clear architectural distinction between globally applicable
governance overlays and account — scoped modules such as 00_kms_datalake.yaml.
The approach is compatible with the principles of the AWS Landing Zone Accelerator,
while maintaining the flexibility to tailor stack placement and sequencing based on
mission needs.

® shared/stacks/init/init_stack.yaml: Initialises cross-account trust boundaries
and defines delegation roles for stack set execution.

® security/stacks/00_kmsKeys.yaml, 00_kms_ingest.yaml, 00_kms_datalake.yaml:
Define mission-specific KMS encryption boundaries for logging, telemetry and
analytics.

* shared/stacksets/10_guardrails.yaml: Defines preventive governance overlays
(e.g. SCPs), compliance rules and security baselining.

Deployment Sequence and Modules. The foundational deployment sequence reflects
a layered approach to establishing core Landing Zone infrastructure. Each component

98

O 0 N N U e W N

s
o

4.1 DEPLOYMENT

targets specific trust domains, control planes and compliance overlays. The sequence
is optimised to enforce separation of concerns, support security baselining and enable
workload — aligned policy overlays:

® 00_kmsKeys.yaml: Declares centralised KMS keys to protect log aggregation,
telemetry streams and shared analytic pipelines. Access control is limited to scoped
roles via KeyUsers, KeyAdmins and KeyServiceRoles, enforcing least-privilege ac-
cess and policy separation.

* 00_kms_ingest.yaml: Instantiates telemetry-scoped KMS keys within the Ingest
account to enable encryption of sensor streams and ingestion buffers. Workload-
specific tags (e.g. Workload=Telemetry) and ARNs-based boundaries support in-
heritance of downstream policy overlays and fine-grained auditability.

* 00_kms_datalake.yaml: Deploys a mission-specific KMS key in the Datalake
account. The configuration enables EnableKeyRotation, aligns with CIS recom-
mendations and supports structured tagging for compliance propagation across
analytic zones.

® 10_guardrails.yaml: Provides account-wide preventive and detective controls
through SCPs, AWS Config and additional overlays. It enforces MFA, disables
inline IAM, blocks RDP/SSH access points, mandates SSE-KMS encryption and
enforces IMDSv2-only configuration for EC2 instances.

Deployment orchestration is implemented via Bash-based wrapper scripts
—— deploy_stacks.sh and deploy_stack_sets.sh — which encapsulate AWS CLI
logic for secure parameter injection and role-based delegation. These scripts assume
pre-scoped roles via AssumeRole, enforce consistent naming patterns (e.g. ProjectName,

Environment, AccountId) and retrieve parameters from version-controlled parameters. json

files. The resulting infrastructure is securely and repeatably deployed across trust bound-
aries. This setup remains extensible for sovereign and mission-specific use cases and
supports a seamless upgrade path toward policy-enforced CI/CD-driven automation.

00_kms_datalake.yaml

Minimal CloudFormation template to exemplify the KMS foundation with secure key pro-
visioning scoped to analytic workloads. The configuration below enforces key rotation and
workload tagging.

Resources:
DatalakeKmsKey:
Type: AWS::KMS::Key
Properties:
EnableKeyRotation: true
Description: "KMS key for Datalake telemetry and analytics"
KeyPolicy: !Sub ...
Tags:
- Key: Workload
Value: Analytics

10_guardrails.yaml

Minimal CloudFormation template to define a portion of guardrails with preventive controls
via explicit SCP overlays, including enforcement of modern identity and access management
practices:

99

O 0 N N U W N

[SSRGS
LN = O

IMPLEMENTATION

Policies:
DenyLegacyIlamActions:
Type: AWS::0rganizations::Policy
Properties:
PolicyName: "DenyLegacyIAM"
Content:
Version: "2012-10-17"
Statement:
- Effect: Deny
Action:
- iam:CreateUser
- iam:PutUserPolicy
Resource: "*"

Stacks are executed either via isolated environments (e.g. bastion hosts or ephemeral EC2
runners) or orchestrated from the Ingest account using
deploy_stack_sets.sh. Each stack incorporates a unique ProjectName, Environment and
AccountId to ensure compliance with project-wide naming schemas. The parameterisation is
sourced from external parameters. json files, which are version-controlled and validated in
pre-deployment stages.

This modular deployment ensures strict separation of concerns by isolating encryption
domains, access controls and governance logic per functional domain. Tagging schemes are
applied consistently to support automated policy overlays and enable audit trail validation.
This results in an infrastructure foundation upon which critical workloads (e.g. PHM, CIVS)
can be securely deployed and cryptographically attested across multiple trust domains and
enclave-backed security zones.

Security Considerations. The decision to deploy mission-specific KMS keys reflects their
pivotal role in enforcing encryption-at-rest policies, managing cryptographic access separation
and underpinning audit traceability across all landing zone domains. Compared to alternative
services such as AWS Secrets Manager or Parameter Store, KMS integrates more directly with
IAM-scoped permissions, supports automatic key rotation and aligns natively with advanced
compliance regimes (e.g. ISO/IEC 27001, NIST 800-53).

The guardrails.yaml template embodies a governance-first approach to preventive and
detective control enforcement. The term guardrails originates from the principle of embedding
non-negotiable policies early in the infrastructure lifecycle to constrain misconfigurations and
security drift. These controls — codified via SCPs, AWS Config Rules and CloudTrail insights —
extend the shared responsibility model by enforcing least-privilege, zero-trust assumptions from
the outset.

Alternative strategies — such as using service-linked roles, organisation-wide tagging
policies or reactive drift detection — offer varying levels of coverage but lack the proactive
enforcement guarantees provided by SCP-based guardrails. In multi-tenant or federated coalition
contexts, such as those governed by NATO or EU structures, guardrails help to assert workload
boundary isolation across sovereign domains.

When adapting this setup for mission owners or sovereign MoD customers, additional
security layers may be required. Customers operating under NATO directives or frameworks
such as C5 or TSE-SE may mandate enclave-verified deployments, remote attestation workflows
or constrained infrastructure-as-code execution under certified policies.

For example, TSE-SE deployments may necessitate integration with Nitro Enclaves or
AMD SEV-SNP, wherein even KMS access must be bound to attestation tokens. Furthermore,
C5-aligned operations often prohibit externally managed orchestration (e.g. third-party CI/CD
runners) and require audit-friendly artefacts such as signed build manifests and reproducible
deployment logs.

Therefore, while the current PoC pipeline offers high reproducibility and composability,
deployment within a customer-controlled environment may require tightening of execution

100

4.2 SECURITY AND COMPLIANCE CONTROLS

boundaries, increased segregation of duties and policy-aligned customisations. These adaptations
are essential to align with sovereign control expectations and defence-grade certification regimes.

4.2 SECURITY AND COMPLTANCE CONTROLS

The increasing complexity of mission systems and their distributed execution across hybrid and
sovereign cloud environments demands rigorous security and compliance controls. These must
not only reflect prevailing security standards (e.g. CIS, NIST, ISO 27001) but also incorporate
cutting-edge enforcement techniques and traceability mechanisms aligned with operational
needs. Within the scope of the OmniAware platform, a defence-in-depth approach is adopted that
spans infrastructure encryption, privileged access management, cross-account identity controls
and runtime integrity attestation.

While foundational security mechanisms such as IAM permissions boundaries, SCPs and
logging policies were already established in Section 4.1, this section extends the compliance
baseline with deeper technical enforcement across core workloads. Notably, hardware-assisted
trust anchors via TEEs were examined to fulfil emerging demands for runtime integrity and
cross-domain provenance — particularly in sensitive mission deployments. The investigation
focused on AMD SEV-SNP as the primary attestation mechanism, while AWS Nitro Enclaves
were concurrently explored for comparison and potential dual-mode enforcement. Based on
controlled deployment trials, the project successfully implemented a validated Remote Attestation
workflow via SEV-SNP in a secure testbed, establishing a verifiable trust boundary for future
enclave-integrated systems.

4.2.1 Guardrail Enforcement and Extended Compliance Scope

To operationalise baseline security principles, a dedicated StackSet template

(10_guardrails.yaml) was implemented. The guardrails concept extends standard SCP-based

preventive controls with AWS Config-based detective and responsive mechanisms. These enforce

security posture across all Landing Zone accounts in alignment with platform-level policies.
The following controls were actively monitored and enforced:

® 53 Public Access Block: Ensures explicit denial of public access at both account and
bucket level to avoid accidental data exposure.

¢ EBS Volume Encryption: Validates mandatory use of SSE-KMS-encrypted volumes for all
EC2 instances, scoped to mission-specific KMS keys.

¢ EC2 IMDSv2 Enforcement: Mandates exclusive usage of IMDSv2, thereby disabling
vulnerable legacy metadata endpoints.

¢ CloudTrail Multi-Region Enablement: Activates cross-region CloudTrail logging to pro-
vide consistent traceability and support forensic incident response.

These guardrails exemplify defence-in-depth: while preventive boundaries avoid misconfig-
urations at deployment, detective policies enforce continual runtime compliance. The StackSet
propagation ensures that even dynamic workloads across AWS accounts remain policy-aligned.

4.2.2 Secure Infrastructure Foundation: Guild Account Deployment

To provide a controlled and extensible context for validating TEE trust anchors and ensuring
compatibility with SEV-SNP, the remote attestation environment was instantiated within a
separate, guild-linked AWS account. The foundational deployment was defined in the
10_cc-secure-infra-attestation.yaml stack 6.2, designed to overcome permission issues,
role propagation limitations and deployment obstacles observed in the primary GIT-linked
development account.

101

IMPLEMENTATION

This infrastructure setup offered improved isolation, streamlined compliance enforcement
and simplified integration with downstream modules — ultimately making it the preferred
platform for implementing and testing hardware-based attestation logic within project time
constraints.

102

O 0 N O U W N =

NN = = = s = = e e e e
= O 0O 00 N Ul W N = O

@ N9 O U W N =

4.2 SECURITY AND COMPLIANCE CONTROLS

The deployment comprises a complete security-first infrastructure baseline, including
segregated VPC layout, subnet isolation, NAT routing boundaries, scoped IAM roles, project-
specific KMS keys and restrictive SecurityGroup definitions. The following example illustrates
the configuration of a dedicated KMS key for use within attestation workflows:

10_cc-secure-infra-attestation.yaml
Scoped KMS Key for Attestation Workflows.

AttestationKMSKey:
Type: "AWS::KMS::Key"
Properties:
Description: "KMS Key for Remote Attestation Test Secrets"
KeyPolicy:
Version: "2012-10-17"
Statement:
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub "arn:aws:iam::${AWS::AccountId}:root"
Action: "kms:*"
Resource: "x"
- Sid: "Allow EC2 Service"
Effect: "Allow"
Principal:
Service: "ec2.amazonaws.com'"
Action:
- "kms:Decrypt"
- "kms:GenerateDataKey"
- "kms:CreateGrant"

Vault is an open-source system for secret management, access control and dynamic creden-
tial provisioning. In this project, it is used to verify remote attestation claims (e.g. via SEV-SNP)
and release secrets only to trusted workloads, establishing a cryptographic trust anchor for work-
load integrity. Although Vault manages secrets internally, a dedicated KMS key is integrated
into the attestation flow to enforce scoped cryptographic permissions, support temporary grant
logic and ensure audit traceability. This key complements Vault’s access model by acting as a
policy-bound control point for sensitive operations post-attestation.

In alignment with zero-trust and least-privilege principles, the networking layout was
tightly scoped: public and private subnets were logically separated, EC2 traffic routed via a
managed NAT gateway and communication with Vault services was constrained to internal
routes protected by a self-referencing SecurityGroup. This ensured that lateral movements were
only possible within scoped identity domains.

To meet the runtime requirements of SEV-SNP-enabled attestation hosts, dedicated EC2
instances were configured using vetted Ubuntu or Amazon Linux 2 AMIs with matching CPU
configurations. The following LaunchTemplate snippet defines the core properties of the instance
configuration:

10_cc-secure-infra-attestation.yaml

SEV-SNP EC2 Launch Configuration.

SEVSNPLaunchTemplate:
Type: "AWS::EC2::LaunchTemplate"
Properties:
LaunchTemplateData:
InstanceType: '"c6a.large"
Imageld: !FindInMap [RegionMap, !Ref "AWS::Region", AmazonLinuxAMI]
CpuOptions:
AmdSevSnp: "enabled"

The selection of AMIs was guided by the compatibility requirements of both hardware-based

103

IMPLEMENTATION

attestation technologies evaluated during the project. For SEV-SNP, only recent Ubuntu LTS
distributions and hardened Amazon Linux 2 (AL2) images provide the required kernel versions
and firmware interfaces to interact with AMD SEV-SNP’s extensions. In contrast, Nitro Enclaves
mandates AL2 or custom-built enclave-compatible AMIs to support enclave configuration via
nitro-cli. Given the exploratory nature of the Nitro path and the production maturity of
SEV-SNP for Linux-based telemetry workloads, the final deployment standardised on a vetted
Ubuntu AMI with built-in SNP support.

This secure deployment blueprint laid the technical foundation for the Remote Attestation
module presented in Section 4.2.3. Preliminary investigations with Nitro Enclaves were also
performed to assess their applicability, though limitations in enclave-specific tooling, network-
ing constraints and compatibility with Vault attestation flows made SEV-SNP the preferred
enforcement model under the given conditions.

The resulting baseline complies with common SCP-based restrictions (e.g. iam:CreateUser
denial, blocked inline policies) and is extensible to mission-specific compliance mandates, in-
cluding aforementioned accreditation frameworks.

By embedding policy enforcement mechanisms into both structural and procedural layers —
including tagging conventions, identity boundaries and parameterisation — the platform lays a
consistent foundation for advanced attestation workflows, which are dissected in the subsequent
section.

4.2.3 Remote Attestation and Key Management

Summary: Remote attestation constitutes a foundational capability for enforcing cryptographic
trust boundaries in confidential computing. It enables the integrity validation of sensitive
workloads prior to secret disclosure, binding runtime and deployment context to mission-specific
access conditions. In the context of military-grade edge and cloud infrastructure, this mechanism
is particularly critical for safeguarding data sovereignty and operational trust in coalition-based
or untrusted domains.

This section introduces a comprehensive blueprint for implementing attestation-driven
access control using SEV-SNP, a dedicated Vault-based key management setup and supporting
infrastructure components. The deployment builds upon the secure environment defined in
10_cc-secure-infra-attestation.yaml, where attestation-ready EC2 instances, isolated net-
working zones and KMS-bound trust anchors provide the structural enforcement substrate.
Complementary to this, the 15_cc-vault-poc.yaml stack provisions a hardened Vault instance,
configured to validate cryptographic claims and selectively release secrets based on successful
attestation.

All artefacts and trust bindings are orchestrated via a lightweight CI/CD pipeline and
parameterised through parameters. json. Critical operations such as token signing, claim en-
capsulation and verifier communication are encapsulated within a custom-built Python module
(PyJWT.py), which serves as the logical interface between attesting workloads and the verifier
service.

While the project also explored AWS Nitro Enclaves as a potential alternative for runtime
isolation, implementation constraints — particularly the need to embed and adapt the Nitro
Enclaves C-SDK [45] into mission workloads — led to the decision to deprioritise this path
within the PoC. Corresponding insights are discussed in the validation section, but no functional
integration of Nitro Enclaves was achieved within the available timeframe.

The remainder of this section dissects the attestation workflow in detail, including attester
preparation, verifier design, enclave-bound policy enforcement and secure secret delivery
— providing a reproducible, policy-driven model for mission-grade remote attestation in dis-
tributed defence systems.

104

4.2 SECURITY AND COMPLIANCE CONTROLS

Core Components of Remote Attestation Architecture

An attestation-enabled confidential computing environment typically comprises the following
key components:

¢ Attester: The TEE or enclave-enabled workload that generates a signed attestation report

(e.g. using AMD Secure Processor or Nitro Enclave Attestation Document).

* Verifier: A trusted external entity that evaluates the attestation report against a set of
policies or allowlists (e.g. expected measurements, build IDs, firmware versions).

¢ Key Broker or Key Management Service (KMS): A system that releases cryptographic
secrets only upon successful attestation validation.

* Policy Engine: Optional component enforcing additional conditions such as geolocation,
time constraints or mission role attributes.

Key and Attestation Services
Several existing services are suitable for implementing this architecture in a defence context:
1. HashiCorp Vault

* Provides Transit Secrets Engine for envelope encryption and
policy-controlled key release.

¢ Integrates with custom or built-in attestation verifiers via plugins or REST-based
workflows.

* Supports external integration with SEV-SNP and Nitro Enclaves via project-specific
extensions [61].

2. AWS Key Management Service (KMS)

e Supports KMS for Nitro Enclaves through the Enclave SDK, which validates the
Attestation Document before granting access to KMS-delegated secrets [6], [40].

¢ Limited to AWS-specific deployments; attestation logic is embedded in the Nitro
SDK.

e Can be extended with AWS Secrets Manager or custom KMS proxy with policy
constraints.

3. Confidential Consortium Framework (CCF)

* An open-source Microsoft initiative to support attested execution and ledger-backed
policy enforcement.

® Supports confidential ledgers and programmable policy control based on attestation
evidence.

¢ Can integrate with AMD SEV-SNP attestation reports and external certificate chains.
4. SPIRE/SPIFFE (Secure Production Identity Framework for Everyone)

e Provides attestation-based identity issuance for workloads.
* Supports integration with TPMs, TEEs and cloud-native enclaves.

* Can serve as a trust anchor for downstream key release flows or mTLS-based service
meshes.

5. Keylime

* An open-source project for TPM- and TEE-backed remote attestation.
¢ Compatible with AMD SEV-SNP through custom plugin development.

* Focused on policy-driven continuous attestation and secure key bootstrapping.

105

IMPLEMENTATION

6. Azure Attestation and Managed HSM (optional for NATO-internal hybrid scenarios)

* Supports SGX-based attestation workflows and conditional access to Hardware

Security Modules.

* While Azure HSMs are not usable in EU Sovereign Cloud scenarios, the attestation
mechanism can serve as reference architecture for coalition environments.

Table 4.1: Key Management Tools for confidential computing Integration [6], [40]

Criterion HashiCorp | AWS KMS | Fortanix Keylime
Vault DSM

SEV-SNP Support Yes (Cus-| No Partial Yes
tom)

Nitro Enclave Support Partial Yes Yes No

Integration with PoC Flexible Native API-based | CLI

Policy Enforcement High High High Medium

Air-Gap / Sovereign-Ready | Yes No Yes Yes

Open Source Available Partial No No Yes

Compatibility and Operational Considerations

For AMD SEV-SNP, the attestation flow includes the use of Versioned Chip Endorsement
Keys (VCEKs) and attestation reports signed by the Secure Processor. These can be val-
idated against AMD’s public certificate infrastructure and evaluated by a verifier such
as Vault, SPIRE or Keylime [61]. While technically mature, SEV-SNP is currently only
available in a limited number of AWS regions (namely eu-west-1 and us-east-2), making
global deployment less flexible compared to Nitro Enclaves [61].

For Nitro Enclaves, the Attestation Document is structured as a JSON Web Signature

(JWS), verifiable against AWS’ public key. The attestation document can be passed to AWS
KMS or a custom proxy for secret release [46].

For mission-critical deployments in the defence sector, the following requirements must be

fulfilled:

Sovereign control of the attestation verification step, ensuring that only national or
NATO-accredited verifiers control secret release.

Offline-capable policy evaluation, especially for edge or battlefield environments with
intermittent connectivity.

Auditability and compliance traceability, in accordance with STANAG 4774/4778 and
AC/322-D(2021)0032-REV1.

Key release granularity, tailored per mission, device or operator role.

The combination of SEV-SNP and Nitro Enclaves provides a powerful hybrid for trusted

computing in NATO or EU defence scenarios. Key services such as HashiCorp Vault, SPIRE
and AWS KMS with enclave integration offer flexible and extensible foundations for remote
attestation workflows. Future work should focus on integrating sovereign attestation backends

with

hardware-rooted policies and formalising their compliance alignment under NATO cyber

certification tracks.

106

4.2 SECURITY AND COMPLIANCE CONTROLS

HashiCorp Vault 0SS. For the implementation of the prototype architecture, HashiCorp
Vault in its open-source variant was selected as the key management solution. This decision was
based on a combination of technical flexibility, security capabilities and integration feasibility
under mission-relevant constraints. Vault OSS offers robust support for SEV-SNP-based attesta-
tion workflows through its extensible transit secrets engine, allowing for policy-enforced key
release and cryptographic operations tied to attested workloads. Although native integration
with Nitro Enclaves is not fully supported out-of-the-box, Vault can be extended via the exec
plugin interface or integrated with the AWS Enclave SDK to build enclave-aware release logic.

Compared to other key management services, Vault 0SS provides a unique balance between
auditability, open customisation and sovereignty readiness. It can be deployed in air-gapped en-
vironments and supports full on-premises operation, thereby satisfying the strategic requirement
of sovereign control over key material and attestation logic. Furthermore, the policy language
(HCL) enables fine-grained access control and key release conditions, which can be enforced at
runtime without reliance on external control planes.

Due to its open-source nature, Vault also supports transparent validation, which is essential
for defence-grade deployments requiring verifiability of the attestation and key release logic.
Unlike managed services such as AWS KMS or Fortanix DSM, Vault OSS incurs no licensing cost
and avoids runtime dependencies on proprietary ecosystems — making it particularly suitable
for PoC deployments in hybrid or sovereign mission domains.

In summary, Vault OSS was chosen to ensure technical alignment with attested confidential
computing environments, to support sovereign control over cryptographic primitives and to
maximise transparency and extensibility in the implementation phase of the platform.

Prototype Implementation: Confidential Key Release with Remote Attestation

To validate the feasibility of secure workload provisioning in defence cloud environments, a
prototype system was implemented that demonstrates remote attestation-driven key release
using TEE-based confidential computing. The prototype establishes a controlled execution
environment in which cryptographic secrets are only provisioned to compute instances that have
been successfully attested according to predefined security policies. This mechanism serves as a
foundational security primitive for mission applications that require strong runtime guarantees
and sovereign trust anchoring.

The implementation is based on a minimal but representative architecture comprising
one instance each of an AMD SEV-SNP-enabled virtual machine and an AWS Nitro Enclave.
These two platforms exemplify distinct attestation mechanisms — one targeting infrastructure-
level VMs and the other focused on application-level enclaves within cloud-native contexts. A
standalone HashiCorp Vault instance acts as the key management system (KMS) and policy
enforcement point, equipped with transport layer security (TLS) and an attestation verification
plugin.

At the core of the prototype lies a remote attestation workflow that includes the following
stages: enclave instantiation, measurement generation, evidence signing by a hardware root of
trust, validation by the verifier and conditional release of a high-sensitivity test secret (e.g. a
symmetric AES-256 encryption key). This test secret is designed to emulate mission data or
access credentials and is used to validate the complete key release chain.

Policy enforcement is realised through a declarative configuration within the Vault environ-
ment. The verifier module compares attestation reports against allowlisted measurements and
metadata constraints such as enclave version, origin or launch timestamp. Only upon successful
verification is the wrapped encryption key transmitted into the trusted memory space of the
requesting enclave. At no point is the key exposed to the host operating system, hypervisor or
any external observer.

This minimal attestation stack enables the emulation of defence scenarios in which access to
critical mission data is cryptographically bound to the attestation state of the compute node. By
leveraging attestation as a dynamic policy mechanism, the architecture allows for fine-grained
trust decisions, including geofencing, mission time-boxing and platform-specific policy binding.

The prototype serves as a practical verification of the architecture proposed in Chapter 3,
demonstrating how confidential computing mechanisms can be concretely implemented and

107

IMPLEMENTATION

evaluated within a defence context. It also provides a blueprint for future extension toward
more complex deployment topologies, including Kubernetes-integrated confidential workloads,
multi-tenant enclave isolation and fully decentralised key provisioning.

Table 4.2: Remote Attestation and Key Management Prototype

Component Layer

Role in Attestation Workflow

Remarks

Confidential Runtime
Environment

Hosts the trusted workload
within a hardware-rooted en-
clave

1x EC2 instance with
SEV-SNP

1x EC2 instance with
Nitro Enclave-enabled

HashiCorp Vault
(0s8)

Key management service that
enforces attestation-gated se-
cret release

Deployed with TLS;
runs standalone (or in
dev mode for PoC)

Verifier Component

Validates attestation evidence
against expected measure-
ments and metadata

Implemented via Vault
plugin or external pol-
icy enforcement mod-
ule

Attestation Evidence
Generator

Produces signed reports re-
flecting enclave state and
identity

sev-tool (SEV-SNP) or
Nitro Enclave SDK at-
testation interface

Secrets Policy Engine

Applies constraints for key re-
lease (e.g. PCR hash, enclave
measurement, expiry)

Implemented via Vault
HCL policy or custom
validation logic

TLS Certificate Infras-
tructure

Secures communication be-
tween Vault and clients/veri-

Self-signed or CA-
issued; configured for

fiers Vault API endpoints
Test Secret (AES-256 | Validates the complete | Rotated regularly, used
key) attestation-driven release | for decrypting synthetic

workflow mission payload

Methodological Approach

To demonstrate the practical feasibility of attestation-based key management in confidential
computing environments, a minimal service deployment was selected. This configuration aims
to capture the essential control flow for cryptographically verifiable secret release using remote
attestation. The chosen stack combines a TEE-enabled runtime (e.g. SEV-SNP or Nitro Enclave)
with HashiCorp Vault 0SS as a flexible and extensible key management system.

The implementation follows a stepwise approach:

1. Enclave Launch and Evidence Generation: The attested workload is deployed in a TEE
(e.g. SEV-SNP VM or Nitro Enclave). Upon launch, it generates a signed attestation report
using the platform’s root-of-trust (e.g. AMD-SP or Nitro Enclave SDK).

2. Attestation Report Submission: The workload transmits the attestation report to an
external verifier or directly to Vault via a pre-defined API endpoint.

3. Verification and Policy Matching: The report is evaluated against an allowlist of expected
enclave measurements and runtime parameters. Vault enforces policy conditions — such
as measurement hashes, launch time constraints or mission roles — before proceeding.

4. Key Release: If verification is successful, the secret (e.g. symmetric key, config blob) is
released into the enclave via short-lived, in-memory transfer. All actions are logged for
compliance.

108

4.2 SECURITY AND COMPLIANCE CONTROLS

5. Optional Audit and Replay Protection: Additional metadata — such as request nonces,
enclave ID or attestation timestamps — can be included to enforce auditability and replay
resistance.

This architecture forms the foundational building block for trusted key provisioning in
sovereign and mission-critical cloud environments. It ensures that cryptographic material is only
accessible to verified workloads operating in trusted enclaves, thereby aligning with NATO and
EU confidentiality, auditability and data sovereignty requirements.

Deployment Methodology for the Prototype

The implementation of remote attestation capabilities in the prototype followed a dual-path
deployment methodology, reflecting two competing approaches to establishing confidential
workload enforcement: AWS Nitro Enclaves and AMD SEV-SNP. Both approaches were evaluated
against a shared infrastructure foundation that includes isolated network domains, scoped KMS
policies and Vault-integrated secret delivery. The technical artefacts and pipelines for both
paths are orchestrated via parameterised templates and shell wrappers as part of the broader
Infrastructure-as-Code workflow. Given the reliance on AWS-managed services such as EC2,
KMS and Nitro Enclaves, the deployment was executed in the eu-west-1 region. This region
was selected based on proximity, service availability and native support for SEV-SNP-enabled
instance types during implementation. The entire setup was provisioned within a dedicated
AWS account operated through the internal sandbox environment of the AWS’s Guild Germany.

Path A: Nitro Enclave-Based Remote Attestation. Due to its native integration with
AWS services and presumed ease of deployment, Nitro Enclaves were initially prioritised.
A Nitro-compatible EC2 instance was provisioned and enclave instantiation validated using
nitro-cli and vsock-based communication. However, while the enclave runtime was operable,
the integration of the Nitro Enclaves C-SDK into mission-specific workloads, along with the need
for custom JWT claim handling and Vault-compatible attestation logic, introduced significant
complexity. Given time constraints and the early prototype scope, this path was deprioritised.
Selected implementation details and limitations are revisited in the validation section.

Path B: SEV-SNP-Based Remote Attestation. Following the constraints encountered with
Nitro, the deployment pivoted to AMD SEV-SNP, leveraging a Ubuntu-based EC2 instance in
eu-west-1 with SNP-enabled CPU configuration. The attesting instance generated JWT tokens
using the PyJWT. py module, incorporating claims derived from the SEV-SNP attestation report
via snpguest. A Vault instance deployed via 15_cc-vault-poc.yaml validated these tokens
against a configured role and released secrets based on successful integrity checks. The entire
attestation pipeline, including Vault token issuance, policy binding and secret encryption, was
fully integrated and validated within the prototype.

To operationalise the proposed prototype, a structured deployment methodology is applied
to ensure reproducibility, traceability and mission-context alignment. The procedure focuses on
deploying a minimal confidential key release architecture with integrated TEE-based attestation
and policy-enforced key provisioning.

The deployment methodology initially followed a dual-path strategy, reflecting two distinct
confidential computing approaches using AWS Nitro Enclaves (Path A) and AMD SEV-SNP
(Path B). While Path A commenced first due to native integration advantages, it was halted upon
encountering significant complexity in the initial SDK integration step. Consequently, Path B was
introduced using SEV-SNP instances, proceeding successfully through enclave instantiation and
attestation workflow implementation. The final stage of Vault deployment and configuration
was completed jointly, integrating learnings from both paths.

The Nitro Enclave approach initially prioritised leveraging native AWS integration. Early
phases including infrastructure provisioning, secure networking configuration and enclave
instantiation using nitro-cli and vsock-based communication were completed. The path was
halted during the initial integration phase of the Nitro Enclaves SDK, due to high complexity
and resource demands.

109

IMPLEMENTATION

. Environment Preparation (Completed): Provisioned a Nitro-compatible EC2 instance, val-

idated enclave instantiation with nitro-cli and established secure vsock communication.
Configured isolated networking, TLS termination and role-based access aligned to Zero
Trust principles.

. Attestation Document Generation (Implementation Halted): Initiated integration of the

Nitro Enclaves SDK for attestation document generation, halted due to complexity in
custom claim parsing and enclave-specific handler development.

. Verifier Binding (Planned): Intended definition of a verifier module for evaluating attes-

tation documents against a known-good baseline was planned but deprioritised due to
halted SDK integration efforts.

. Key Policy Enforcement (Planned): Envisioned Vault policies enforcing enclave attesta-

tion claims, issuing JWT tokens for policy-driven key release.

. Test Secret Provisioning and Access (Planned): Planned verification of policy-compliant

secret handling within enclaves.

. Validation and Logging (Planned): Anticipated validation of logs and attestation tokens

ensuring traceable enclave verification under Zero Trust controls.

Pivoting after Path A was paused, Path B leveraged AMD SEV-SNP-enabled infrastructure

and successfully established a full attestation workflow.

1.

Environment Preparation (Completed): Provisioned SEV-SNP-enabled EC2 instances
(e.g. c6a) within a secure networking environment, including robust TLS termination and
role-based access control.

Attestation Channel Setup (Completed): Configured the 1ibsnpguest-based attestation
logic on Ubuntu instances to securely generate JWT tokens embedding attestation claims
from the SNP attestation reports.

. Vault Deployment and Joint Configuration (Completed): Deployed a centralised HashiCorp

Vault instance using the stack 15_cc-vault-poc.yaml, integrating learnings from Path A
infrastructure setup. Configured the Transit Secrets Engine, audit logging, JWT authenti-
cation backend and attestation-specific policies to validate tokens issued from SEV-SNP
environments, enabling conditional secret access.

. Key Policy Enforcement (Completed): Established Vault policies enforcing strict con-

straints on attestation claims (e.g. PCR, enclave hash) verified during token validation.

. Test Secret Provisioning and Access (Completed): Successfully validated conditional

secret encryption, decryption and secure rotation operations through Vault’s transit API,
strictly controlled by attestation status.

. Validation and Logging (Completed): Implemented systematic logging and token vali-

dation workflows for replay protection and auditable traceability of enclave verification
outcomes.

This deployment methodology accurately represents the integrated workflow, highlighting

the shift from initial Nitro Enclave exploration to the fully realised SEV-SNP-based solution,
culminating in a consolidated Vault deployment. Insights, challenges and key learnings are
detailed in the validation section.

Deployment for the Prototype

This

section outlines an extraction of the deployment process, focusing on the key steps and

configurations that enabled the successful implementation of the remote attestation and key
management prototype, based on the SEV-SNP architecture. The prototype deployment followed
an automated and partially automated approach, leveraging AWS CloudFormation templates to
provision foundational infrastructure components while manually configuring runtime-specific
elements. This hybrid approach was chosen to balance flexibility, complexity management and
iterative development agility in early prototyping phases.

110

4.2 SECURITY AND COMPLIANCE CONTROLS

Infrastructure Provisioning (Automated). Infrastructure provisioning was entirely auto-
mated via CloudFormation stacks 10_cc-secure-infra-attestation.yaml and
15_cc-vault-poc.yaml. The complete source code for these is provided in full detail in An-
nex 6.2. These listings serve as a comprehensive reference to facilitate reproducibility, trans-
parency and detailed verification of the infrastructure provisioning process.

Specifically, the automation provided:

O 0 N N Uk W N

e e e < =
AN Ul = W N =R O

17
18
19
20
21
22
23
24
25

¢ Secure Networking and Subnet Architecture

Excerpt of the automated provisioning of the foundational network architecture, includ-
ing isolated subnets.

Resources:
PrivateSubnet:
Type: AWS::EC2::Subnet
Properties:
Vpcld: !'Ref VPC
CidrBlock: 10.0.2.0/24
AvailabilityZone: !Select [0, !GetAZs '']
Tags:
- Key: Name
Value: !Sub "${ProjectName}-${Environment}-private-subnet"

InternalSecurityGroup:
Type: "AWS::EC2::SecurityGroup"
Properties:
GroupName: !Sub "${ProjectName}-${Environment}-internal-sg"
GroupDescription: "Internal communication between attestation
— components"
Vpcld: !'Ref VPC
SecurityGroupEgress:
Outbound Internet for Updates
- IpProtocol: "-1"
CidrIp: "0.0.0.0/0"
Description: "Outbound Internet"
Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-internal-sg"

The configuration of the PrivateSubnet and the associated InternalSecurityGroup
within this template reflects essential principles of secure-by-design network segmentation
and least privilege access control. The PrivateSubnet is defined with an explicitly scoped
CIDR block 10.0.2.0/24 and availability zone selection using !Select and !GetAZs, en-
abling deterministic and scalable subnet placement across deployment regions. Tagging
conventions using parameterised ${ProjectName} and ${Environment} variables promote
environment-specific resource labelling for improved traceability and policy enforcement.

The InternalSecurityGroup is configured to restrict inbound traffic entirely and to per-
mit outbound traffic only to 0.0.0.0/0, thereby enforcing an egress-only pattern by
default. This allows instances to pull updates or communicate externally without expos-
ing internal services to unsolicited inbound access. The use of the tag ““Role: Internal
SG” supports automated role-based policies and dynamic security posture evaluation.
Together, these definitions enforce baseline isolation for attested compute nodes while
supporting controlled outbound interactions necessary for update mechanisms and trust
bootstrapping.

111

IMPLEMENTATION

O 0 N U W N

RN RNNNNRNRIRIRR B 58 s s s s
O 0 N O U = W N = O W 00 N O U = W N = O

30
31
32
33
34

112

® TAM roles, instance profiles and security group configurations

Essential runtime permissions for attestation, cryptographic operations and secure
instance management were provisioned via scoped IAM roles and associated instance
profiles.

Resources:
EC2Role:
Type: "AWS::IAM::Role"
Properties:

RoleName: !Sub "${ProjectName}-${Environment}-ec2-role"
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Principal:
Service: "ec2.amazonaws.com"
Action: "sts:AssumeRole"
ManagedPolicyArns:
- "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore"
Policies:
- PolicyName: "AttestationPermissions"
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "kms:Decrypt"
- "kms:GenerateDataKey"
- "kms:CreateGrant"
Resource: !GetAtt AttestationKMSKey.Arn
- Effect: "Allow"
Action:
- "ec2:CreateTags"
Resource: !Sub "arn:aws:ec2:${AWS::Region}:${AWS::AccountId}

— :instance/*" # Allows tagging of EC2 instances

EC2InstanceProfile:
Type: "AWS::IAM::InstanceProfile"
Properties:
Roles:

- !Ref EC2Role

The configuration of the EC2Role and its associated InstanceProfile establishes granular
permission boundaries to enforce secure workload execution and access governance.
The role is explicitly scoped to allow secure communication with the KMS, supporting
decryption, data key generation and grant creation operations restricted to the attestation
key resource. Additionally, permission to create EC2 tags ensures traceable resource
labelling in alignment with audit and compliance requirements. The attachment of the
AmazonSSMManagedInstanceCore managed policy facilitates integration with SSM for
secure post-deployment management. Through parameterised naming and tightly scoped
access policies, this configuration realises a mission-aligned Zero Trust posture across
compute instances deployed for attestation workflows.

O O N Ul AW N e

»P%%%ﬁ»P»P%%wwwwwwwwwwh)NNNNNNNNNH»—IH»—IHH»—IHH»—I
® NN o O W N P O OV O N O U bk WP O VW X N O G kB WDN R O WV N O G & W -~ o

[S2
[==Ja\e]

51
52
53

4.2 SECURITY AND COMPLIANCE CONTROLS

® Instance Deployment - OmniAware-EC2-SEV-SNP
Initial system preparation, dependency management and installation of attestation
components.

Resources:
SEVSNPLaunchTemplate:
Type: "AWS::EC2::LaunchTemplate"
Properties:
LaunchTemplateData:

InstanceType: "c6a.large"
Imageld: !FindInMap [RegionMap, !Ref "AWS::Region", AmazonLinuxAMI]
IamInstanceProfile:

Name: !Ref EC2InstanceProfile
KeyName: !Ref EC2KeyPair
SecurityGrouplds:

- !'Ref InternalSecurityGroup
CpuOptions:

AmdSevSnp: "enabled"
UserData:

Fn::Base64: !Sub |
#!/bin/bash
set -e

Set hostname
hostnamectl set-hostname OmniAware-EC2-SEV-SNP
echo '127.0.0.1 OmniAware-EC2-SEV-SNP' >> /etc/hosts

Install development tools and dependencies

dnf groupinstall -y "Development Tools"

dnf install -y cmake git wget jq openssl-devel \
protobuf-compiler libtool autoconf automake \
kernel-headers kernel-devel awscli

[...]

Install snpguest

cd /opt

git clone https://github.com/virtee/snpguest.git
cd snpguest

cargo build --release

cp target/release/snpguest /usr/local/bin/

Install sevctl

cd /opt

git clone https://github.com/virtee/sevctl.git
cd sevctl

cargo build --release

cp target/release/sevctl /usr/local/bin/

Vault CLI installation

apt-get update -y

apt-get install -y gnupg software-properties-common curl unzip
curl -fsSL https://apt.releases.hashicorp.com/gpg | gpg --dearmor
— -o /usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb

— [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpgl
— https://apt.releases.hashicorp.com $(1lsb_release -cs) main" |
< tee /etc/apt/sources.list.d/hashicorp.list

Vault Dependencies
apt-get install -y python3-pip

113

IMPLEMENTATION

54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71

114

apt-get install -y python3-full

Set environment variable for Vault address
echo 'export VAULT_ADDR="http://<!Ref VaultInstancePrivateIP>"'
— >> ~/.bashrc

[...]
SEVSNPInstance:
Type: "AWS::EC2::Instance"
Properties:
SubnetId: !Ref PrivateSubnet
LaunchTemplate:

LaunchTemplateld: !Ref SEVSNPLaunchTemplate
Version: !GetAtt SEVSNPLaunchTemplate.LatestVersionNumber

Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-sev-snp"
- Key: "Role"

Value: "SEV-SNP-Attester"

The SEVSNPLaunchTemplate and its associated SEVSNPInstance define the automated
provisioning and initial configuration of a confidential compute node within a SEV-SNP-
enabled EC2 environment. The launch template encapsulates all essential bootstrapping
logic via embedded UserData, ensuring deterministic preparation of the attestation run-
time. This includes the installation of attestation-specific tools such as snpguest and
sevctl, which are required to extract and validate SEV-SNP attestation reports directly
from the CPU’s firmware interface. snpguest interacts with the Secure Nested Paging
Guest Request via Guest-Hypervisor Communication Block (GHCB) protocol to retrieve
measurement data, while sevctl supports auxiliary verification and integration workflows.
Their successful compilation requires low-level development toolchains, including rust,
cmake and system headers, which are provisioned as part of the launch phase. The instance
runs on AL2.

While this template enables end-to-end environment preparation, key limitations persist re-
garding full automation of the remote attestation flow with HashiCorp Vault. Specifically,
the generation of JWT tokens, Vault policy definition and secret key release mechanisms
must be executed outside the EC2 lifecycle — either manually or via dedicated post-
deployment scripts. These constraints reflect a separation between system bootstrapping
and trust policy enforcement, highlighting the need for orchestration layers beyond the
scope of UserData-based initialisation.

A functionally equivalent and additional variant of this launch template based on Ubuntu

24.04 LTS is provided in Annex 6.2, showcasing interoperability across base operating
systems while preserving the structural integrity of the provisioning workflow.

O 0 N N G W N

N RN N NN NN NN R P R 2 s e
® N O U s W N R O 0 N ONU W N RO

29

30

31
32

33

34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50

4.2 SECURITY AND COMPLIANCE CONTROLS

®* Instance Deployment - OmniAware-EC2-Vault
Automated Vault provisioning pipeline, including bootstrap, Transit Secret Engine
setup, JWT auth configuration and policy-based Remote Attestation validation.

Resources:
VaultInstance:
Type: AWS::EC2::Instance
Properties:
InstanceType: t3.micro
Imageld: !FindInMap [RegionMap, !Ref "AWS::Region", UbuntuAMI]
KeyName:
!TmportValue
Fn::Sub: "${InfraStackName}-KeyPair-Name"
SubnetId:
!TmportValue
Fn::Sub: "${InfraStackName}-PrivateSubnet-ID"
SecurityGrouplds:
- !ImportValue

Fn::Sub: "${InfraStackName}-Internal-Security-Group-ID"
IamInstanceProfile:
!TmportValue
Fn::Sub: "${InfraStackNamel}-InstanceProfile-Name"
UserData:
Fn::Base64: !Sub |
#!/bin/bash
set -e

hostnamectl set-hostname OmniAware-EC2-Vault
echo '127.0.0.1 OmniAware-EC2-Vault' >> /etc/hosts

snap install aws-cli --classic
apt-get update && apt-get install -y jq curl wget git cmake
< build-essential \
linux-headers-$(uname -r) libssl-dev pkg-config autoconf automake
— libtool \
protobuf-compiler libprotobuf-dev gnupg
— software-properties-common unzip

curl -fsSL https://apt.releases.hashicorp.com/gpg | gpg --dearmor
— -0 /usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb

— [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpgl
— https://apt.releases.hashicorp.com $(1lsb_release -cs) main" |
— tee /etc/apt/sources.list.d/hashicorp.list

apt-get update && apt-get install -y vault net-tools

useradd --system --home /etc/vault.d --shell /usr/sbin/nologin vault
mkdir -p /opt/vault/data /etc/vault.d
chown -R vault:vault /opt/vault /etc/vault.d

Write Vault Config
cat <<VAULTCFGEQF > /etc/vault.d/vault.hcl

storage "file" {
path = "/opt/vault/data"

}

listener "tcp" {
address = "0.0.0.0:8200"
tls_disable = true

}

115

IMPLEMENTATION

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107

116

api_addr = "http://127.0.0.1:8200"
cluster_addr = "https://127.0.0.1:8201"
ui = true

VAULTCFGEQF

Write Systemd Unit File

cat <<VAULTUNITEOF > /etc/systemd/system/vault.service
[Unit]

Description=HashiCorp Vault - A tool for managing secrets
Documentation=https://www.vaultproject.io/docs/
Requires=network-online.target
After=network-online.target
ConditionFileNotEmpty=/etc/vault.d/vault.hcl

[Service]

User=vault

Group=vault

ExecStart=/usr/bin/vault server -config=/etc/vault.d/vault.hcl
Restart=on-failure

[Installl
WantedBy=multi-user.target
VAULTUNITEQOF

systemctl daemon-reload
systemctl enable vault
systemctl start vault
sleep 10

export VAULT_ADDR="http://127.0.0.1:8200"

vault operator init -key-shares=1 -key-threshold=1 >

— /home/ubuntu/vault-keys.txt

UNSEAL_KEY=$(grep 'Unseal Key 1' /home/ubuntu/vault-keys.txt | awk
— '{print $NF}')

ROOT_TOKEN=$(grep 'Initial Root Token' /home/ubuntu/vault-keys.txt |
— awk '{print $NF}')

vault operator unseal "$UNSEAL_KEY"

vault login "$ROOT_TOKEN"

vault secrets enable transit

vault write -f transit/keys/attestation-test

Create Transit Key for Attestation

cat <<POLICY > /tmp/attestation-policy.hcl

path "transit/encrypt/attestation-test" {
capabilities = ["update"]

}

path "transit/decrypt/attestation-test" {
capabilities = ["update"]

}

path "transit/keys/attestation-test" {
capabilities = ["read"]

}

POLICY

vault policy write attestation-policy /tmp/attestation-policy.hcl
echo "export VAULT_ADDR=http://127.0.0.1:8200" >>

— /home/ubuntu/.bashrc

echo "export VAULT_TOKEN=$ROOT_TOKEN" >> /home/ubuntu/.bashrc
chown ubuntu:ubuntu /home/ubuntu/vault-keys.txt

chmod 600 /home/ubuntu/vault-keys.txt

108
109
110
111
112
113
114
115
116
117

4.2 SECURITY AND COMPLIANCE CONTROLS
JWT Validation Setup
vault auth enable jwt

Structure Setup
mkdir -p /etc/vault.d/jut

Tags:
- Key: "Name"
Value: !'Sub "${ProjectNamel}-${Environment}-vault"
- Key: "Role"

Value: "Vault-Server"

The VaultInstance resource encapsulates the automated provisioning and configuration
of a dedicated EC2 instance designated to host the HashiCorp Vault service as a critical
enabler for remote attestation and key management within the platform architecture.
Leveraging a hardened Ubuntu LTS base image, the instance is fully bootstrapped via
embedded UserData logic that executes a multi-phase installation sequence, covering
binary provisioning, runtime configuration, service orchestration and policy preloading.

The instance is deployed within an isolated private subnet and tightly coupled to privileged
IAM instance profiles and restricted VPC security groups, imported dynamically via
stack references. Core server behaviour is governed by three key configuration artefacts
generated during instance initialisation:

— /etc/vault.d/vault.hcl defines the backend storage (file), local listener binding
on port 8200 and operational parameters such as the API and cluster address;

- /etc/systemd/system/vault.service ensures resilient, system-managed startup of
the Vault process with dependency ordering and restart policies;

- /tmp/attestation-policy.hcl encapsulates fine-grained access control logic for
the transit engine and is applied immediately post-initialisation.

Upon first boot, Vault is automatically initialised using a one-share scheme, unsealed via
extracted credentials and authenticated using the root token. Both the unseal key and root
token are securely persisted in /home/ubuntu/vault-keys.txt, with restricted file per-
missions and ownership. These credentials are also exported into the user’s environment
for downstream access by follow-up automation scripts.

A deliberate architectural decision was made to omit HTTPS encryption on the Vault
listener, despite its native support for TLS. This choice was informed by the desire to
exclude certificate lifecycle complexity from the initial PoC. Introducing TLS would
have necessitated additional operational workflows, such as certificate issuance, renewal
scheduling, secret rotation and secure propagation across the infrastructure. While alterna-
tive solutions—including central certificate authorities, AWS Certificate Manager (ACM)
or S3-based deployment—were considered, they were excluded in favour of a minimal,
reproducible and agile deployment path. The trade-off is effectively mitigated by the
deployment within a tightly controlled private subnet and may be reevaluated during
future production hardening phases.

This design simplification also affects downstream cryptographic tooling. In particular,
the PyJWT.py script — responsible for constructing SEV-SNP-backed JWT tokens for
attestation — would require certificate validation under a strict HITPS regime. This
would imply the existence of a trusted public key infrastructure or synchronised certificate
distribution process, which may conflict with the air-gapped or enclave-constrained nature
of such deployments. By retaining an HTTP-only local context, the deployment achieves
frictionless integration with attestation-capable workloads while maintaining extensibility
for future TLS-based transitions.

Beyond basic setup, the template also automates activation of the transit secrets engine
and the provisioning of a cryptographically scoped key labelled attestation-test, which
is subject to the previously defined access policy. The Vault JWT authentication backend
is enabled and structurally prepared for future integration steps, including JWKS URI

117

IMPLEMENTATION

registration and claim-to-role mappings, which can be added manually or via follow-up
IaC enhancements.

Vault Deployment Characteristics and Operational Constraints. The vault in-
stance deployment encompasses EC2 instance initialisation, installation of required de-
pendencies, Vault installation and essential bootstrapping tasks, such as operator unseal,
root token export and activation of the Transit Secrets Engine. Although this automated
sequence substantially alleviates the operational burden of manual provisioning, several
runtime-critical components necessitate explicit post-deployment configuration. This is
primarily due to Vault’s inherently stateful design and the use of the open-source version,
which lacks support for persisted dynamic runtime artefacts. In contrast to the enterprise-
grade edition, Vault OSS does not retain authentication roles, JWT validation configurations
or OIDC-related metadata across restarts. Consequently, runtime artefacts such as JWT
roles and their associated cryptographic validation logic must be re-established manually
after each service restart or infrastructure redeployment.

Runtime Configuration (Partially Automated). While the vault instance is automatically
deployed and bootstrapped, additional runtime steps were required to ensure secure integration
with the SEV-SNP guest. Due to the stateless design of the open-source Vault version and the
absence of Enterprise-grade configuration persistence, dynamic elements such as JWT auth roles
and validation logic could not be retained across reboots.

Moreover, HTTPS was deliberately omitted to avoid operational complexity associated with
certificate management, including TLS provisioning and trust chain validation. Enabling HTTPS
would have required either integrating a certificate authority service or distributing signed
certificates via external channels (e.g. S3), both of which would have introduced coupling and
deployment overhead.

To maintain a reproducible and lightweight prototype environment, these elements were
instead configured manually post-deployment. The manual configuration included:

* Re-establishing JWT authentication backends

¢ Uploading and parsing SEV-SNP JWT claims

* Binding Vault policies to attested claims

¢ Verifying the Transit Secrets Engine integration

To maintain architectural simplicity and maximise reproducibility during early-phase develop-
ment, these design trade-offs were consciously accepted. Consequently, the following manual
runtime steps were performed:

® JWT Authentication Backend Configuration - OmniAware-EC2-Vault
The JWT authentication backend must be re-enabled and configured with the appropri-
ate public key and issuer details. This includes providing the public.pem key file and
defining the expected bound_issuer string used for SEV-SNP attestation tokens.

1 vault auth enable jwt

2 vault write auth/jwt/config \

3 jwt_validation_pubkeys=@/etc/vault.d/public.pem \

4 bound_issuer="sev-snp"
In order to validate SEV-SNP-based JWT tokens, the Vault authentication backend must
be explicitly enabled and configured with the correct cryptographic material. This includes
the public key that corresponds to the attestation report signature, which must first
be generated and stored in an accessible location on the Vault instance. A typical key
generation command is:

1 openssl genrsa -out sev-snp-key.pem 2048

2 openssl rsa -in sev-snp-key.pem -pubout -out /etc/vault.d/public.pem

118

N U W

4.2 SECURITY AND COMPLIANCE CONTROLS

This public key file is referenced in the Vault jwt/config path to establish a trusted
source for bound issuers and claims validation.

The public key used for JWT validation in Vault must correspond to the private key on
the SEV-SNP instance that generates the attestation token. This ensures cryptographic
verifiability of the enclave identity and its associated claims. To obtain the public key
from the SEV-SNP instance, several transport mechanisms can be employed depending on
the security posture and automation level. In development settings, a secure copy can be
performed manually using scp, e.g.:

scp /home/ubuntu/public.pem vault-admin@vault-instance:/etc/vault.d/public.pem

In operational contexts leveraging AMD SEV-SNP, the transfer of the public verification
key from the attester node to the Vault instance can be fully automated as part of a secure
bootstrapping pipeline. The public key, which is typically derived from a pre-generated
asymmetric key pair within the confidential guest, must be made accessible to Vault in
order to verify the integrity and authenticity of signed attestation tokens.

To avoid insecure transport mechanisms or manual intervention, this process can be
integrated with AWS Systems Manager (S5SM) capabilities, which allow direct and secure
injection of the enclave’s public key into the Vault host. This ensures cryptographic
alignment between the SEV-SNP attestation signer and the Vault JWT verifier, establishing
a consistent trust chain. The automated handover of the public key strengthens the integrity
of the Remote Attestation workflow, reduces the operational attack surface and supports
reproducibility in high-assurance environments.

The entire process must be tightly controlled and logged, particularly in regulated defence
contexts, to fulfil auditability and traceability requirements. In future iterations, a CI/CD
pipeline may facilitate automatic provisioning of enclave-generated keys, further reducing
manual intervention and increasing deployment security.

Role Recreation Post-Restart - OmniAware-EC2-Vault

Since Vault does not persist JWT roles across restarts unless explicitly stored in an
external backend, the attestation role must be recreated manually to bind claims (such
as sub, aud) to specific token policies.

vault write auth/jwt/role/sev-snp-role \
role_type="jut" \
user_claim="sub" \
bound_subject="attester-001" \
bound_audiences="vault" \
token_policies="attestation-policy" \
ttl="1h"

Likewise, the presence of cryptographic keys within the Transit Engine should be verified
to ensure subsequent encryption requests do not fail due to missing or misconfigured
key entries. This validation step is particularly important for attestation-based workloads,
where runtime encryption depends on a correctly registered key. The example shown
issues a write operation to create or verify the attestation-test key within the Transit
namespace.

- user_claim specifies which JWT claim (e.g. sub) is to be used as the identity anchor.

— bound_subject enforces that only JWTs with a specific subject value
(e.g. attester-001) are accepted.

- bound_audiences restricts tokens to a predefined audience (e.g. vault).

— token_policies assigns the Vault policy (e.g. attestation-policy) to be granted
upon successful authentication.

— ttl sets the time-to-live for the issued token.

119

IMPLEMENTATION

O 0 N U ke W N

e e e o
O N O U W N O

120

These attributes ensure that only authorised and attested entities — typically confidential
workloads running inside enclaves or confidential VMs — can access Vault’s capabilities.

Transit Secrets Engine Verification - OmniAware-EC2-Vault
Although the Transit engine is enabled at deployment, it is recommended to verify its
availability and ensure the presence of the designated key.

vault secrets enable -path=transit transit
vault write -f transit/keys/attestation-test

The verification of the transit secrets engine ensures that Vault is not only capable of
handling cryptographic operations, but also correctly initialised to manage designated
keys for remote attestation scenarios. While the transit backend is enabled automatically
during provisioning, the explicit creation of a namespaced key (attestation-test) serves
as a validation checkpoint and a functional prerequisite for subsequent encryption and
decryption operations tied to enclave-based workflows.

The invocation of
vault secrets enable -path=transit transit
re-establishes the backend (if necessary), while the command
vault write -f transit/keys/attestation-test

provisions the required key under the defined path. This key becomes the central entity for
all encryption, decryption and signing processes that are triggered by enclave verifiers or
policy-enforced routines during runtime. In a production setup, key configuration options
such as derived, exportable or auto_rotate could be used to tailor lifecycle behaviour
and compliance characteristics.

SEV-SNP Remote Attestation Script Configuration - OmniAware-EC2-SEV-SNP
Shell script to regenerate the SEV-SNP attestation report and interact with Vault.

#!/bin/bash
export VAULT_ADDR=<OmniAware-EC2-Vault-IP>:8200
export VAULT_SKIP_VERIFY=true

cd /opt/snpguest-test/

snpguest report /tmp/guest_report.bin /tmp/request.txt --random \
&& base64 /tmp/guest_report.bin > /tmp/guest_report.b64

python3 /opt/snpguest-test/PyJWT.py > jwt.txt
export JWT_TOKEN=$(cat jwt.txt)

export VAULT_TOKEN=$(curl -sk --request POST \
--url "$VAULT_ADDR/v1l/auth/jwt/login" \
--header "Content-Type: application/json" \
--data "{\"jwt\": \"$JIJWT_TOKEN\", \"role\": \"sev-snp-role\"}" \
| jg -r '.auth.client_token')

vault token lookup

The above shell script implements the final runtime logic required to initialise and com-
plete the remote attestation flow from an SEV-SNP-enabled confidential compute node.
After navigating into the attestation working directory, the snpguest report command
is used to generate a signed SEV-SNP report, which is subsequently base64-encoded
and embedded into a signed JWT using a local Python utility (PyJWT.py). This token,
containing cryptographically bound metadata about the confidential guest (e.g. report,
sub, aud, iss, and expiration time), is then submitted to the Vault instance for verification
via the JWT authentication backend.

O 0 N U W N

e el e
Uk W N = o

4.2 SECURITY AND COMPLIANCE CONTROLS

Upon successful login, Vault returns a short-lived session token scoped to the previously
configured policy (attestation-policy). The variable VAULT_TOKEN captures this result
and enables further authenticated interaction with Vault, such as requesting or decrypt-
ing secrets through the transit engine. The entire process demonstrates a secure and
reproducible attestation workflow on runtime level and is intended for direct integration
in post-bootstrapping automation pipelines on the enclave host.

The script assumes the existence of a valid Vault configuration accepting JWTs signed with
the same private key used by the PyJWT. py script. For completeness, the JWT construction
logic is shown below.

PyJWT.py - OmniAware-EC2-SEV-SNP
Minimal Python tool to generate a signed SEV-SNP attestation JWT.

import jwt
from datetime import datetime, timedelta, timezone

private_key = open('"private.key", "r").read()

payload = {
"sub": "attester-001",
"aud": "vault",
"iss": "sev-snp",
"nonce": "abc123",

"jat": datetime.now(timezone.utc),
"exp": datetime.now(timezone.utc) + timedelta(minutes=5),
"report": open("/tmp/guest_report.b64", "rb").read().hex()

}
token = jwt.encode(payload, private_key, algorithm="RS256")
print (token)

This utility script constructs a standards-compliant JWT for SEV-SNP attestation based on
the RS266 algorithm. The payload includes semantic metadata required by the Vault veri-
fier, such as the enclave’s subject identifier (sub), the designated audience (aud), the issuer
label (iss) and the embedded base64-encoded SEV-SNP attestation report. Additionally,
the token includes a nonce and expiration time to ensure replay resistance and short-lived
trust anchors. The resulting token is printed to stdout and subsequently used for Vault
login.

For hardened environments, the private key should reside within a secure enclave, HSM
or transient filesystem and ideally be rotated or generated per workload. Production-grade
setups may also include derived claims and hardware-bound attestation metadata.

Vault Audit Logging Activation - OmniAware-EC2-Vault

Vault’s audit subsystem was programmatically activated to ensure complete traceability
and post-deployment introspection of sensitive operations such as secret reads, token
generation or policy application. The following configuration was embedded into the
deployment pipeline to persist audit logs locally:

vault audit enable file file_path=/var/log/vault/audit.log

This configuration ensures that all authenticated Vault operations are recorded in struc-
tured log files, including metadata such as requestor identity, token scopes and times-
tamped action trails. The audit logs are locally persisted on the EC2 host and can
be accessed post-deployment using secure remote access mechanisms (e.g. aws ssm
start-session). The logs are serialised in JSON and support automated parsing via
tools such as jq, as demonstrated below:

cat /var/log/vault/audit.log | jq

121

IMPLEMENTATION

To maintain separation of duties and support forensic readiness in regulated deployments,
the audit logs were configured for restricted access, ensuring they can only be read by
authorised operational personnel or collected via external compliance agents. Optional
extensions include forwarding to centralised log aggregation services (e.g. CloudWatch
Logs or SIEM backends), which were intentionally omitted to minimise PoC complexity.

The deployment approach implemented in the prototype followed a deliberately pragmatic
methodology, combining automated infrastructure provisioning with partially automated run-
time configuration steps. While the foundational components — including network architecture,
EC2 instance provisioning and essential IAM permissions — were provisioned through repro-
ducible IaC templates, several runtime-specific configurations, such as Vault role definitions,
JWT public key handling and trust policy bindings, were executed manually or via shell scripts
external to the template pipeline.

This hybrid approach enabled controlled experimentation with critical security components
and allowed for iterative validation of system behaviour under realistic operational conditions.
Particularly in early prototyping stages, the selective use of manual steps was instrumental in
achieving visibility, traceability and fine-grained control over individual configuration states.

However, the reliance on partially automated procedures also introduced limitations in
terms of repeatability, audit assurance and error tolerance. Manual post-deployment actions —
especially those related to security policy enforcement — are inherently prone to human error
and complicate validation in regulated or scaled environments.

From a methodological perspective, this highlights the trade-off between architectural
flexibility and operational reproducibility. Future iterations may revisit the degree of automation
depending on the maturity of the system, the assurance requirements of the target environment
and the available organisational support for continuous configuration governance.

In conclusion, while the implemented deployment strategy effectively demonstrated the
feasibility and technical soundness of the proposed architecture, its partially automated character
should be viewed as an interim solution. A progressive transition towards declarative and fully
automated runtime configuration — aligned with the foundational automation layers — is
recommended to minimise operational risk and increase maintainability for production-grade
deployments.

122

4.3 INTERFACES

4.3 INTERFACES

Summary: This section presents the interface design and implementation strategy for secure,
schema-compliant data ingestion within the OmniAware platform. A lightweight API gateway
setup, tailored for the PHM scenario, was implemented in alignment with cloud-native IaC
practices and foundational zero-trust principles. The prototype enables structured JSON-based
schema validation, modular exposure of ingestion endpoints and introduces the architectural
groundwork for identity-bound access control using JWTs — although integration of Vault-based
token validation remained out of scope.

The design was inspired by NGVA interface principles, allowing future extensibility towards
coalition-compliant deployments without introducing platform dependencies. By maintaining a
minimal and testable service footprint, the approach supports rapid prototyping and schema
evolution while remaining compatible with high-assurance, federated environments. This es-
tablishes a hardened, policy-enforced ingress layer as a foundational enabler for sovereign and
mission-oriented multi-cloud architectures.

4.3.1 Data Flow Design and Deployment Strategy

To illustrate the ingestion interface’s role within the broader system, its architectural integration
is depicted in Figure 3.9. The diagram outlines the secure data flow from external producers
through the API Gateway, schema-based validation and modular forwarding mechanisms to-
wards downstream consumers. While full identity-bound access control via JWTs and policy
enforcement is not yet active, the architectural layout anticipates their integration. This visual
framing positions the ingestion interface as a future trust-enforcing boundary between untrusted
data sources and mission-grade, policy-aware cloud-native services — aligned with zero-trust
design principles.

A structured design approach is required that accommodates both real-time operational
requirements and long-term standardisation goals to enable secure and interoperable data
ingestion in the OmniAware platform. This section introduces the ingestion interface architecture
developed for the Platform Health Monitoring (PHM) scenario. It represents the first step towards
a federated, extensible and policy-enforced data flow architecture, aligned with zero trust and
Confidential Computing principles.

The ingestion pipeline follows a cloud-native IaC-based approach using AWS primitives
and integrates authentication, encryption, validation and policy enforcement as foundational
control points. By embedding JWT-enabled identity propagation and attestation token validation
into the interface logic, the design anticipates secure multi-party data exchange even in untrusted
or coalition-operated environments.

Importantly, the design also draws methodological inspiration from the NATO Generic
Vehicle Architecture (NGVA), which promotes modularity, standardised interfaces and decou-
pled sensor integration in land-based tactical systems. While NGVA specifications were not
implemented in full, the core design philosophy — namely a separation of concerns between data
producers, ingress endpoints and secure compute domains — has been adopted and refined for
cloud-native deployments. This allows seamless extension to future NGVA-compliant systems
without architectural rework.

While STANAG 4754 [7] — which formalises architectural patterns for tactical sensor
systems — is not yet fully implemented in the PoC stack, it provides a valuable guideline for
future extensions and is referenced in the validation context for interface compliance testing. In
particular, the API Gateway developed in this section can later be mapped against the interface
validation checkpoints outlined in Volume VI of the standard.

Federated Readiness and Coalition Interoperability. To support federated deployment
scenarios, the ingest interface must remain agnostic to underlying account boundaries, enabling
schema-aligned validation and token-based access control across distinct security domains. While
these goals were not fully implemented, foundational design principles — such as decoupling

123

IMPLEMENTATION

the interface logic from consumer-specific processing workflows and planning for policy-bound
identity enforcement at the point of ingress — were introduced. This paves the way for integrating
trust enforcement strategies across federated or coalition-operated environments.

In summary, this section presents the initial ingestion service blueprint, implemented
as a parameterised and deployable CloudFormation template. The interface serves as the
foundation for secure telemetry flow, audit logging and subsequent confidential processing and
is referenced in multiple architecture views including NSOV-2 and NSOV-3. The implementation
is intentionally kept modular and minimal to support rapid iteration and testing under PoC
conditions, while offering a migration path to production-grade deployments under alliance-
aligned governance.

4.3.2 Deployment and Automation

As an excerpt of the full deployment stack, the listing is designed to illustrate foundational
aspects such as identity-based request validation, encrypted logging and controlled integration
of telemetry schemas.

To ensure reproducibility and compatibility with existing infrastructure-as-code practices,
the deployment follows the AWS: :CloudFormation format and implements a minimal, yet func-
tional service definition tailored to PoC conditions. This includes a secure API Gateway endpoint,
schema validation for incoming telemetry data and integration with IAM and KMS-based audit
controls.

The excerpt is deployed within the dedicated AWS account of the AWS Guild Germany,
allowing for controlled and isolated experimentation. This facilitates the implementation of
advanced features such as the extension of API Gateway endpoints with Vault-based key provi-
sioning and Remote Attestation mechanisms, without impacting production-like environments.
In this way, a simplified deployment version demonstrates essential functions while enabling
low-risk innovation.

By referencing only essential components, the excerpt remains readable and adaptable. It
serves as a practical template to implement more advanced ingestion pipelines (e.g. classified
ingestion, dynamic source partitioning, etc.) in later development stages. In optimised deploy-
ment methodologies, mirroring of production environments could be considered — provided
the security and resource constraints justify such efforts.

To support alignment with NGVA-aligned architectures, the section also discusses the use
of JSON Schema and outlines future integration options for NGVA data models and validation.

124

BN

4.3 INTERFACES

20_secure-ingest-api.yaml - Excerpt
Secure Ingest API for telemetry and sensor data.

AWSTemplateFormatVersion: "2010-09-09"

Description: >
Secure Ingest API Stack for AWS Guild Account -
reduced to essential components for Proof of Concept and experimental
— Confidential Computing setup.

Parameters:
Application:
Type: String
Default: OmniAware
Stage:
Type: String
Default: dev
Region:
Type: String
Default: eu-west-1
Vpcld:
Type: String
Description: The ID of the VPC to deploy the API into

Resources:
IngestRestApi:

Type: AWS::ApiGateway::RestApi

Properties:
Name: !Sub "${Application}-${Stage}-IngestApi"
Description: Private API for telemetry data ingestion (PoC)
EndpointConfiguration:

Types:
- REGIONAL

TelemetryResource:
Type: AWS::ApiGateway::Resource
Properties:
RestApild: !Ref IngestRestApi
ParentId: !GetAtt IngestRestApi.RootResourceld
PathPart: telemetry

TelemetrylModel:
Type: AWS::ApiGateway::Model
Properties:
RestApild: !Ref IngestRestApi
ContentType: application/json
Name: TelemetryDatalModel
Schema:
"$schema": "http://json-schema.org/draft-04/schema#"
type: object
properties:
timestamp:
type: string
payload:
type: object

The presented excerpt outlines the CloudFormation-based provisioning of a simplified and
isolated telemetry ingestion interface. It defines a minimal AWS: : ApiGateway: :RestApi stack,
including endpoint resources and schema validation for sensor data via APl Gateway models.
Designed for experimental deployments within the AWS account of the AWS Guild Germany, the
configuration intentionally omits integration with downstream consumers or upstream routing
services. It serves as a blueprint for testing Confidential Computing-related extensions, such as

125

IMPLEMENTATION

Vault-based attestation workflows and encryption validation via KMS. Core components such as
tightly scoped IAM roles, minimal telemetry models and hardcoded configuration values make
this a lightweight yet functional prototype, suitable for rapid iteration and future adaptation
towards NGVA-aligned architectures.

Automation and Limitations. While the CloudFormation template automates key con-
figuration steps for the API Gateway layer, including request validation and IAM-controlled
execution, the ingestion backend remains abstracted. Full automation of downstream services
— such as telemetry transformation, metadata enrichment or multi-channel delivery — would
require additional AWS: : Lambda, AWS: :Firehose or AWS: :StepFunctions resources. These are
present in the full PHM reference architecture (cf. Fig. 3.9) but excluded from this excerpt for
clarity and modularity. Furthermore, certificate management and policy-based JWT validation
are intentionally left out in favour of testability.

Schema Validation and NGVA Compatibility. The deployment includes a request model
definition using JSON Schema (Draft-04) [3], which is enforced by an AWS: : ApiGateway: :Model
component and validated by a RequestValidator. JSON Schema provides a structured and inter-
operable means of enforcing data format compliance at runtime, allowing immediate rejection
of malformed telemetry data and preventing downstream processing errors. The corresponding
JSON schema, supporting test bed configuration and payload validation, is provided in the
appendix for reference (cf. Appendix 6.2).

Future iterations of this deployment could integrate NGVA-aligned schemas by map-
ping incoming telemetry payloads to validated NGVA message types. In this context, the
TelemetryDataModel may be extended to include additional metadata fields (e.g. platform ID,
message type, encryption flags) or enforce inheritance constraints defined in a shared schema reg-
istry. Such evolution would allow direct integration of coalition data models while maintaining
Zero Trust enforcement at the ingestion layer.

The full template draft is available in the appendix and can be reused for confidential ingestion
pipelines in sovereign or coalition deployments.

Despite the architectural groundwork and modular service design, the realisation of a
hardened and attestation-aware API Gateway for secure data ingestion remained out of scope
due to time constraints. While foundational components such as Vault integration, token-based
authorisation and schema enforcement were implemented, the envisioned extensions for deep
remote attestation workflows — including runtime enclave verification and dynamic trust
propagation — could not be completed within the timeframe of this thesis. Nevertheless, the
present implementation establishes a starting point for future iterations, offering a validated
deployment scaffold upon which production-grade and zero-trust compliant ingestion flows can
be built.

4.4 VALIDATION

Summary: This section presents the validation of core components along the two attestation
and ingestion paths introduced in the deployment chapter. The primary objectives were to test
the partial implementation of remote attestation flows (Path A with Nitro Enclaves and Path B
with SEV-SNP) as well as to validate secure ingestion mechanisms via a dedicated API Gateway.
Each setup was verified through targeted test executions, runtime logs and manual inspection of
cryptographic and functional outputs.

Path A validated the readiness of the Nitro-based TEE infrastructure and confirmed en-
clave runtime compatibility and vsock-based container execution. While Vault integration
was intentionally excluded, this baseline validation established a solid foundation for future
iterations.

Path B, by contrast, achieved a full end-to-end attestation flow leveraging SEV-SNP guest
measurement reports. The reports were cryptographically signed, converted into a JWT and
successfully submitted to Vault for authentication and attestation-bound decryption. Key con-

126

4.4 VALIDATION

figuration, audit logs and manual token validation confirmed policy-matched secret handling
and strict Zero Trust enforcement.

Additionally, the ingestion interface was evaluated using realistic NGVA-compliant data,
simulating both structured telemetry and unstructured image payloads. A functionally extended
variant of the Secure Ingestion Gateway — deployed under the GIT AWS ingest account —
enabled early validation of production-adjacent ingestion flows. For telemetry, successful schema
validation, Firehose handoff and DynamoDB persistence were demonstrated. For images, visual
classification and metadata extraction were partially successful; however, schema constraints
prevented full pipeline completion due to incomplete detections. This behaviour was consistent
with design expectations and highlights the importance of stable inference output and fallback
schema handling in future iterations.

Together, these results confirm the technical feasibility of Confidential Computing and Zero
Trust enforcement using SEV-SNP attestation within cloud environments. The ingestion pipeline
further demonstrated the ability to process multimodal mission inputs under realistic constraints,
validating the practical applicability of the proposed platform architecture.

4.4.1 Path A: Nitro Enclave Evaluation

The first evaluation path focused on the deployment and runtime validation of a Nitro TEE-
based execution environment. As illustrated in Figure 4.2, a minimal container workload was
successfully built and transformed into a Nitro-compatible enclave image (EIF) using the Nitro
CLL

root@OmniAware-EC2-Nitro-Enclave:/opt/enclave-example$ docker build /usr/share/nitro_enclaves/examples/hello -t hello
docker image ls
nitro-cli build-enclave --docker-uri hello:latest --output-file hello.eif

[+] Building 1.5s (7/7) FINISHED docker:default

REPOSITORY TAG IMAGE ID CREATED SIZE
hello latest 84f6a07fc4c2 Less than a second ago 4.28MB
amazonlinux 2 f3b2a1a8c945 6 days ago 166MB
Start building the Enclave Image...
Using the locally available Docker image...
Enclave Image successfully created.
{
"Measurements"
"HashAlgorit : "Sha3g4 { ... }',
"PCRO": "0517899efb06ffeb3ffb96fbd9d4e40a3aab85ce656c723c90ff32e1e496c5d8ac5a70baba7b658850c7a9ac@73b005c",
"PCR1" b4d5b3661b3efc12920900c80e126e4ce783c522de6c02a2a5bf7af3a2b9327b86776f188e4belc1c404a129dbdad93",
"PCR2": "81fbc850edc614d6055d0ab2f5a8a4b408fa329a820f0f5c108648eade3873cc77c1e944cbb3a8b3438b983d3a3502fa"
}

root@omniAware-EC2-Nitro-Enclave:/opt/enclave-example$

Figure 4.2: OmniAware-EC2-Nitro-Enclave - Building a Nitro Enclave-compatible
Container (EIF) using Nitro CLI

This step verified the correct conversion from Docker to enclave image format and the
compatibility of the Ubuntu-based example with the Nitro execution environment. Subsequently,
the enclave image was launched using vsock-enabled runtime parameters. Figure 4.3 shows the
successful instantiation of the enclave, confirming vsock runtime compatibility and container
isolation.

While this prototype did not include integration with the Vault attestation pipeline, it
validated the fundamental readiness of the Nitro-based SDK environment to support future
remote attestation workflows. In particular, the correct operation of the vsock channel, container
execution and enclave runtime isolation provides a reliable baseline for building attestation-
capable service logic in subsequent iterations.

127

IMPLEMENTATION

root@omniAware-EC2-Nitro-Enclave:/opt/enclave-example$ nitro-cli run-enclave --cpu-count 2 --memory 512 --enclave-cid 16 --e
if-path hello.eif --debug-mode
Start allocating memory. ..
Started enclave with enclave-cid: 16, memory: 1024 MiB, cpu-ids: [1, 5]
{
"EnclaveName": "hello",
"EnclaveID": "i-01a7bc2cfc74bece8-enc19788dcfeeef01f",
"ProcessID"
"EnclaveCID":
"Number0fCPUs" :
"CPUIDs": [
1,
5
1,
"MemoryMiB": 1024

root@omniAware-EC2-Nitro-Enclave:/opt/enclave-example$

Figure 4.3: OmniAware-EC2-Nitro-Enclave - Launching the Nitro Enclave Runtime
with vsock-enabled Parameters

During the deployment and validation process, several technical characteristics of the Nitro
architecture emerged as practically relevant. One key insight was the critical importance of
accurate resource allocation, particularly regarding -memory and -cpu-count flags, which must
be set explicitly to match the enclave’s runtime requirements. The Nitro CLI enforces these limits
strictly and insufficient memory allocation may silently prevent successful enclave startup. Even
in the minimalistic “Hello” example provided by the official SDK, tuning these parameters was
required to ensure successful enclave execution and vsock-based communication.

Furthermore, it was noted that Nitro Enclaves are available in most AWS regions globally,
making them operationally more accessible than SEV-SNP, which is currently restricted to select
instance families in limited data centres. This broader availability may be advantageous for
multinational and distributed coalition deployments, where geographic flexibility and data
residency constraints apply.

Unlike SEV-SNP, Nitro Enclaves demand that container workloads be pre-transformed into
a Nitro-compatible EIF image format. This process requires tight integration with the Nitro
SDK and implies an additional packaging step in the development workflow. The resulting
enclaves operate in a tightly constrained environment without network access, necessitating
explicit implementation of secure vsock channels and tailored runtime environments.

While the SDK provides primitives for implementing remote attestation flows — including
JWT claim verification, vsock forwarding and attested key exchange — the complexity of
integrating these components proved non-trivial. The engineering effort required to implement
the SDK-based remote attestation pipeline, including vsock-proxy, enclave-side server logic
and policy-bound key handling, was deemed disproportionately high in comparison to the
overarching thesis objective of validating SEV-SNP-based confidential computing. As a result,
Path A was scoped to runtime validation only, deliberately omitting SDK integration. This
decision ensured architectural focus and effort alignment while still yielding a technically valid
baseline for enclave execution readiness.

4.4.2 Path B: SEV-SNP and Vault Runtime Validation

The validation pipeline referred to as Path B aimed to verify the feasibility of deploying and at-
testing a dedicated SEV-SNP guest instance on an EC2 node within AMD-powered infrastructure.
This scenario supports the broader PoC objective of enabling hardware-backed confidential com-
puting and attestation-based access control. As shown in Figure 4.4, the system kernel reported
active support for SEV, SEV-ES and SEV-SNP, thus confirming the foundational prerequisites for
memory encryption.

To validate the hardware trust anchor, the sevctl tool was executed (Figure 4.5) to illustrate
the expected platform capabilities in checklist format. While this tool provides valuable insight
into the support status of SEV-SNP features, it is primarily intended for execution on host
systems (i.e. hypervisors) and not guest VMs, where full green-pass results are not guaranteed
due to virtualisation layer constraints.

As seen in the output, basic SEV features were marked as supported, but advanced SNP
functionalities failed due to missing kernel module parameters (e.g. kvm_amd.sev=1) and un-

128

4.4 VALIDATION

root@omniAware-EC2-SEV-SNP:/usr/bin$ dmesg | grep -i sev
0.652292] Memory Encryption Features active: AMD -ES -SNP
0.880178] : Using SNP CPUID table, 64 entries present.

[
[
[
[
[

1.411038] : SNP guest platform device initialized.
6.173181] systemd[1]: Hostname set to <OmniAware-EC2- -SNP>.
8.920888] -guest -guest: Initialized guest driver (using vmpck_id 0)

Figure 4.4: OmniAware-EC2-SEV-SNP - Kernel Confirmation of SEV-SNP Activation:
Verified via dmesg, the guest kernel reports SEV, SEV-ES and SEV-SNP support.

available device nodes such as /dev/sev. These limitations are known side effects of restricted
passthrough capabilities in guest environments and do not inherently indicate the absence of
hardware-level SNP support. For this reason, the use of snpguest is generally recommended
when assessing attestation capabilities from within a VM.

Nevertheless, sevctl remains a valuable tool for demonstrative purposes, as it highlights
the status of key SNP components in a compact and verifiable format.

root@OmniAware-EC2-SEV-SNP:/usr/bin$ sevctl ok

[] - AMD CPU

[- Microcode support

[- Secure Memory Encryption (SME)

[- Secure Encrypted Virtualization (SEV)

[- Encrypted State (SEV-ES)

[- Secure Nested Paging (SEV-SNP)

[- VM Permission Levels

[- Number of VMPLs

[Physical address bit reduction: 0

[C-bit location: 51

[Number of encrypted guests supported simultaneously: 0

[Minimum ASID value for SEV-enabled, SEV-ES disabled guest: 0

[SEV enabled in KVM: Error - /sys/module/kvm_amd/parameters/sev does not exist

[SEV-ES enabled in KVM: Error - /sys/module/kvm_amd/parameters/sev_es does not exist
[Reading /dev/sev: /dev/sev not readable: No such file or directory (os error 2)
[Writing /dev/sev: /dev/sev not writable: No such file or directory (os error 2)
[- Page flush MSR:

[] - KVM supported: Error reading /dev/kvm: (No such file or directory (os error 2))

[] - Memlock resource limit: Soft: 18446744073709551615 | Hard: 18446744073709551615

Figure 4.5: OmniAware-EC2-SEV-SNP - SEV-SNP Capability Check via sevctl:
Expected support for SEV was confirmed; however, full SNP functionality was

unavailable due to missing kernel-level integration.

129

IMPLEMENTATION

Despite these limitations, the guest instance successfully executed the snpguest binary to
generate an attestation report (Figure 4.6), confirming the ability to produce cryptographically
signed TCB measurements and platform metadata via the Secure Processor (SP).

aws ssm start-session --target i-0d21418eec814fb75 --region eu-west-1

Committed TCB:

TCB Version:
Microcode: 220
2

TEE: [}
Boot Loader: 4
FMC: None

Current Version:
Committed Version:
Launch TCB:

TCB Version:
Microcode: 220
2

TEE: [}
Boot Loader: 4
FMC: None

signature:
R

87 D2 C5 E1 20 26 3B A4 EE 45 A7 3F CO 24 E7 6F
03 0C CE 53 38 B8 69 E6 03 FO FC Al 2A DB D8 81
2B F9 23 B3 5D 56 8D FE 48 CB 5D 7F EA 53 FB D9
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

50

7A 9F OF 42 BE FE 1A 27 DA 55 52 6C BF 3A 0A 8F
09 36 59 A6 66 40 CO 2B C2 9F 36 OA 47 15 1E 98
EA 54 E6 98 07 A8 14 0D 27 61 65 1F D6 C1 EC AS
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

root@omn iAware-EC2-SEV-SNP: /$

Figure 4.6: OmniAware-EC2-SEV-SNP - Successful Attestation Report via snpguest:
TCB hashes and platform metadata were generated and cryptographically signed by the
PSP.

For illustrative purposes, Figures 4.7 and 4.8 provide excerpts from the resulting attestation
payload, showcasing policy flags, firmware identifiers and virtual machine privilege levels
(VMPL) relevant to runtime security validation.

Attestation Report:
Version:
Guest SVN:

Guest Policy (0x30000):
ABI Major: (0]
ABI Minor: 0
SMT Allowed: true
Migrate MA: false
Debug Allowed: false
Single Socket: false

Family ID:
00 00 00 00 00 00 00 60 00 00 00 00 00 00 00 00

Image ID:
00 00 00 00 00 00 00 60 00 00 00 00 00 00 00 00

VMPL : 1

Signature Algorithm: 1

Current TCB:

TCB Version:
Microcode:
SNP: 25
TEE: (0]
Boot Loader: 4
FMC: None

Platform Info (39):
SMT Enabled:
TSME Enabled:
ECC Enabled:
RAPL Disabled:
Ciphertext Hiding Enabled:
Alias Check Complete:

Key Information:

author key enabled: false
mask chip key: false

Figure 4.7: OmniAware-EC2-SEV-SNP - Attestation Report: Header and Guest Policy
Values: SNP version, guest operating mode, VMPL and measurement configuration.

130

4.4 VALIDATION

aws ssm start-session --target i-0d21418eec814fb75 --region eu-west-1

Committed TCB:

TCB Version:
Microcode: 220
24

TEE: [}
Boot Loader: 4
FMC: [

ione
Current Version:
Conmitted Verston:
Launch TCB:
TCB Version:
Microcode: 220
: 24
TEE: °
Boot Loader: 4
FMC: None
Signature:
R:
87 D2 C5 EL 20 26 38 A4 EE 45 A7 3F CO 24 E7 6F
0 00 00 00 00 60 68 00 00 00 60 00 00 00 80 00
00 00 00 G0 00 00 00 00
s:
7A 9F OF 42 BE FE 1A 27 DA 55 52 6C BF 3A 6A 8F
09 36 59 A6 66 40 €8 2B C2 9F 36 OA 47 15 1E 98
EA 54 E6 98 07 AB 14 0D 27 61 65 1F D6 C1 EC AS
00 00 00 G0 00 6O 00 00 00 00 00 00 00 00 @0 00

00 00 00 80 00 00 00 00
root@0mn{Aware-EC2-SEV-SNP: /usr/bing

Figure 4.8: OmniAware-EC2-SEV-SNP - Attestation Report: TCB Measurements and
Platform Info: Platform firmware version, TCB identifiers and flags indicating
supported features such as SMT, migration and debug visibility.

The attestation payload was subsequently transformed into a JWT using a custom PyJWT
script and employed in policy-bound interactions with the Vault transit secret engine, as
described in Chapter 4.2. This demonstrated successful enclave-to-host trust propagation using
signed SNP measurements.

Path B confirms that SEV-SNP can be operationalised for runtime attestation even in
partially virtualised environments with limited device pass-through. Although some kernel inte-
gration steps were absent, the remote attestation pipeline remained intact and provides a robust
foundation for integrating confidential workloads into sovereign defence cloud environments.

Despite these limitations, Path B demonstrated the feasibility of SEV-SNP-based attes-
tation within AWS infrastructure and established a robust foundation for policy-bound key
management in follow-up stages.

Building upon the local measurement capabilities established earlier, the second stage of
Path B focused on validating the full SEV-SNP attestation chain, extending from guest report
generation to dynamic key usage within Vault. To initiate this flow, the snpguest utility was
used to trigger the creation of a signed TCB-bound attestation report, which was then processed
using a custom PyJWT script and encoded into a JWT.

curl -sk —-request POST \
--url "$VAULT_ADDR/v1/auth/jwt/login" \
—-header "Content-Type: application/json" \
--data © \"$IWT_TOKEN\", \"role\":
{"request_1 cc9e88f4-0c54-91d3-fb5e-c B " ":false,"lease_duration":0, "data":nul

1, "wrap_info":null, "warnings" :null, "auth 'W3suaC8sMgh0JkH62756xvv7YLEKDIHGh4
KHGh2cy51V1dEVjhaS1NMYmVrdwWVIVHM2VDE3YUs" , gxUmbUmsYFQP j Enél "policies":["attestation-policy"
36

default"],"token_policies":["attestation-policy","default"],"metadata":{"role":"sev-snp-role"},"lease_duratio
00, "renewable":true,"enti id b31ad39 Oecd-1821-658d1f5beb89", "token_type":"service","orphan":true, "mfa_r
equirement":null, "num_uses":0}, "mount_type"

root@0mniAware-EC2-SEV-SNP-Ubuntu:/opt/snpguest-test#

Figure 4.9: OmniAware-EC2-SEV-SNP-Ubuntu - Posting the JWT to Vault for
Authentication via the jwt/login Endpoint: The attestation token is submitted
alongside the associated role (sev-snp-role) to retrieve a scoped Vault token.

As illustrated in Figure 4.9, the JWT was submitted to the Vault jwt/login endpoint, trig-
gering authentication and policy evaluation against the attestation-policy binding. Successful
login yielded a short-lived scoped Vault token, enabling subsequent cryptographic operations
under enclave-bound constraints.

To prepare the key material, a dedicated key ring (attestation-test) was configured
within the Vault transit secrets engine. This key was defined to support decryption and
derivation while disallowing export and plaintext backup.

131

IMPLEMENTATION

root@omniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# vault write -f transit/keys/attestation-tes

allow_plaintext_backup false
auto_rotate_period 0s
deletion_allowed false
false
false
imported_key false
keys map[1:1749907186]
1

latest_version

min_available_version 0
min_decryption_version 1
min_encryption_version [0]

name attestation-test
supports_decryption true
supports_derivation true
supports_encryption true
supports_signing false

t aes256-gcm96

Figure 4.10: OmniAware-EC2-Vault - Key Configuration for Attestation Validation in
Vault: The attestation-test key is restricted for enclave-based operations and bound
to the attestation policy.

root@omniAware-EC2-SEV-SNP-Ubuntu:/opt/snpguest-test# vault write transit/decrypt/attestation-test ciphertext="vau
1t:v1:VW1/P4nqSUHRDED1CjEMiVAWNSEKtjThRj 182tz TXI+GFMZ"

Key

plaintext U0dWc2InPTO=

root@mniAware-EC2-SEV-SNP-Ubuntu:/opt/snpguest-test#

Figure 4.11: OmniAware-SEV-SNP-Ubuntu - Successful Remote Decryption: The
ciphertext is decrypted using Vault and attestation-bound access control.

The generated token was then used to request plaintext decryption via the Vault transit/decrypt
path. Figure 4.11 demonstrates a successful roundtrip, confirming that the Vault instance hon-
oured the cryptographic operation request using the enclave-bound token identity.

root@omniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# cat /home/ubuntu/vault-keys.txt
root@mniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# export VAULT_ADDR=http://127.0.0.1:8200
vault operator init -key-shares=1 -key-threshold=1 > /home/ubuntu/vault-keys.txt
root@mniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# UNSEAL_KEY=$(grep 'Unseal Key 1' /home/ubuntu/vault-key
s.txt | awk '{print $NF}')

vault operator unseal "$UNSEAL_KEY"

Key Value

Seal Type shamir

Initialized true

Sealed false

Total Shares 1

Threshold 1

Version 1.19.5

Build Date 2025-05-29T09:17:06Z

Storage Type file

Cluster Name vault-cluster-653d495b

Cluster ID d229ccce-1e5c-3bbc-74d5-1195ce0307c9

HA Enabled false

Figure 4.12: OmniAware-EC2-Vault - Vault Operator Unseal: Demonstrates successful
initialisation and activation of the Vault instance.

Prior to this test, the Vault instance was initialised using a single-key shamir configuration
and unsealed via operator token.

root@mniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# ROOT_TOKEN=$(grep 'Initial Root Token' /home/ubuntu/vau
lt-keys.txt | awk '{print $NF}')

vault login "$ROOT_TOKEN"

Success! You are now authenticated. The token information displayed below

is already stored in the token helper. You do NOT need to run "vault login"

again. Future Vault requests will automatically use this token.

hvs.u9tNfwka8LLpthyQbUqtMIMQ

token_accessor dWGuVK4jhDgI60biWs10bVwB
token_duration o

‘token_renewable false

token_policies ["root"]
identity_policies [1

policies ["root"]

Figure 4.13: OmniAware-EC2-Vault - Root Token Login: Confirms unrestricted access
to initialise and inspect audit logs.

Root login was performed manually to validate baseline access and inspect audit logs.

132

4.4 VALIDATION

Vault audit logging confirmed that the decryption request was properly authorised and

policy-matched, offering transparency into runtime activity and reinforcing policy-based observ-
ability.

aws ssm start-session --target i-05e8ce429e30b0fee --region eu-west-1

root@mniAware-EC2-Vault:/var/snap/amazon-ssm-agent/11320# cat /var/log/vault/audit.log | jq
{

i q

Figure 4.14: OmniAware-EC2-Vault - Vault Audit Log View: The full token path and
client metadata were logged during secure decryption.

These results validate the feasibility of SEV-SNP-based attestation workflows within a
practical AWS deployment, including full token generation, authentication and attestation-bound
secret access. Together, the sequence represents a working Confidential Computing chain from
guest report to zero-trust Vault enforcement — successfully realising the intent of Path B.

133

IMPLEMENTATION

4.4.3 Interfaces: Secure Ingest Gateway Testing

In order to enable sovereign, controlled and scalable ingestion of mission telemetry and opera-
tional metadata, the OmniAware platform incorporates a dedicated Secure API Gateway. This
gateway is responsible for exposing pre-validated endpoints for data intake from mission com-
ponents, ensuring that payloads are syntactically compliant, semantically scoped and securely
transmitted. It is deployed in conjunction with AWS API Gateway, Lambda transformation
functions and downstream ingestion pipelines (e.g. via Kinesis, Firehose and DynamoDB). The
architectural configuration supports strict schema enforcement, authentication and role-based
access control (RBAC), as well as near real-time operational validation of incoming data.

The ingestion mechanism is intentionally decoupled from sensor-facing APIs to enforce a
clear security boundary between exposed interfaces and internal data pipelines. Each endpoint
is modelled and validated according to domain-specific JSON schemas. For defence-specific
telemetry, this includes the NGVA structure, aligned with STANAG 4754 [7]. The API Gateway
transforms and verifies inbound telemetry in accordance with these NGVA-aligned schemas
before triggering Lambda-based pre-processing and persistent storage.

In the current implementation, a functionally advanced yet non-final version of the Se-
cure Ingestion Gateway was deployed within the dedicated AWS ingest account managed
by GroupIT. While TLS integration and certificate lifecycle management remain pending, the
deployed setup enabled the ingestion of realistic telemetry and image payloads. This allowed for
early validation of production-adjacent ingestion flows and provided a practical opportunity to
observe and assess the NGVA-aligned data model under near-operational conditions.

Validated Ingestion of Telemetry Data

To validate the ingestion of vehicle telemetry using the new NGVA-aligned data model, the
Secure Ingestion API was evaluated using structured input compliant with a simplified version
of STANAG 4754. The test input defined a single telemetry object consisting of timestamped
configuration metadata:

{ "DateTime": "2025-06-23T08:26:18Z", "Vehicle_Configuration":
— {"Actual_Configured_Vehicle": { "vehicleId": "Y-4242" }}}

This payload was submitted via an authenticated POST request to the /v1/telemetry end-
point. The API Gateway accepted the request with Status 200, performed request validation and
forwarded the payload to the internal transformation Lambda (OmniAware-TelemetryDatalngest).
Execution logs confirm the successful receipt, schema validation, processing and handoff to
Firehose.

2025-06-23T09:06:08Z: ‘‘message’: ‘‘Record ingested successfull”’
RequestId: 716c3858-f7bf-43ce-825d-caf10dd392f6, Integration latency: 2595ms

The transformed payload was subsequently ingested by a dedicated Firehose delivery
stream, which wrote the validated data to the TelemetryData table in DynamoDB. As confirmed
by DynamoDB query results, the data was persistently stored with the correct vehicle_id and
timestamp metadata:

{ "vehicle_id": "Y-4242", "timestamp": "2025-06-23T08:26:18Z", "data": { "DateTime":
— "2025-06-23T08:26:18Z",
"Vehicle_Configuration": { "Actual_Configured_Vehicle": { "vehicleId": "Y-4242" } },
— "transform": "Hello from Firehose
Transform Lambda." } }

This successful test validates not only the functionality of the ingestion flow, but also the
system’s ability to process and store structured mission telemetry in accordance with future-
proof, NATO-aligned data models. The modular implementation also lays the groundwork
for extending the schema to full NGVA compliance, including support for health monitoring,
positional telemetry and multi-modal sensor fusion.

134

4.4 VALIDATION

Validated Ingestion of Image Data

As a complementary capability to structured telemetry ingestion, the PoC pipeline was extended
to support image-based intelligence capture and classification. While the Secure Ingestion
Gateway deployed in the AWS Guild account remains a minimal prototype primarily intended
for testing confidential computing workflows such as Vault integration and remote attestation,
a more advanced and functionally extended version was provisioned within the GroupIT AWS
ingest account. This extended setup enabled the validation of near-operational ingestion flows
for unstructured image data, allowing for practical testing of NGVA-aligned payloads under
realistic mission conditions.

Figure 4.15: Sample Image - Used for Ingestion Test: The image, featuring several
tracked military vehicles, was encoded and submitted for processing via the ingestion
API [68].

Image encoding was conducted client-side using base64, a common prerequisite for trans-
mitting binary payloads over JSON-based REST APIs. The transformation command is shown
below:

cat <Insert Image Path> | base64 > <Insert Base64 File Path>.txt

After submission, the processing pipeline — which includes AWS Lambda-backed process-
ing logic — successfully triggered a classification job. As shown in Figure 4.16, the image was
partially parsed by the inference engine and several visual attributes were extracted.

135

IMPLEMENTATION

e CloudWatch > Log groups
CloudWatch <
Favorites and recents >

Dashboards
» Al Operations New
» Alarms Ao Do Do
¥ Logs

Log groups

Log Anomalies

Live Tail

Logs Insights New

Contributor Insights

» Metrics

» Application Signals New
(APM)

» Network Monitoring
» Insights

Settings

Telemetry config New

Getting Started

What's new

Log events

> /OmniAware/ProcessData/lmage > 2025/06/23/OmniAware-ImageProcessing[$LATEST]cae2bee...

© G) Gt

You can use the filter bar below to search for and match terms, phrases, or values in your log events. Learn more about filter patterns [%

Q Filter events - press enter to search

Display ¥

> | Timestamp

14 2025-06-23T709:16:26.521Z

14 2025-06-23T709:16:26.946Z

4 2025-06-23T709:16:27.184Z

4 2025-06-23T709:16:27.184Z

> 2025-06-23T709:16:27.184Z

4 2025-06-23T09:16:27.184Z

4 2025-06-23T09:16:28.930Z

4 2025-06-23T709:16:28.930Z

> 2025-06-23T709:16:28.930Z
> 2025-06-23T09:16:28.930Z
4 2025-06-23T709:16:28.930Z

|| Im h

Message
No older events at this moment. Retry

{"time":"2025-06-23709:16:26.521Z", "type": "platform.initStart","record":
{"initializationType":"

on

demand", "phase”: "init","runtimeVersion":"python:3.13.v45","runtimeVersionArn": "art

aws: lambda: eu-
central-1: :runtime:1c3b07 6716029241581 6ad4:
", "functionName" : "OmniAware-InageProcessing" " functionVersion": "SLATEST"}}

{"timestamp": "2025-06-23709:16:262", "level": "INFO", "message": "Found
credentials in environment variables.", "logger": "botocore.credentials",
"requestId": "}

{"time":"2025-06-23709:16:27.184Z","type": "platform.start","record":
{"requestId":"76a2fac3-06e2-5d41-
b05b-9a101b456bda" , "functionArn": "arn:aws:lambda: eu-

central-1:713287343299: function:OmniAware-ImageProcessing”, "version": "SLATEST"}}

Received event with content: {"Records": [{"messageld": "@f9a0b66-
edeb-4037-8c50-934db4904511", "receiptHandle":

Create metric filter

UTC timezone ¥

n:

18bd1b8

"AQEBTS3Z6pi 3WUXTYkmXFyC3FBZFSq48y3erh9xVIMAS]CyUjOyAdr+RRgKCdXNamBTPdLTZnQ1 LeHtup

GXhy9K2Bk3RC/

QOCefmz8cEqOzmTF6dVapr6veBk131rfLBZ2HxRthVSN+DS8LYZsv1gReBtoXjO4KDNVAY7YbuliJSjdtIK

TkcUbBO/JtQcRZIWCL FrapINxqeyUi tM3LM41 Vil dYzOYT+Gata/

PZ2ZfHPbZ+10VHQJg08 jbawpZaw7F214523hE0i+b16Vjq60tmIVQPnolS4rbkrX2EGCysitabcE2ze5cZm

y. P Vapr/
xuon3Lwz;NWEKPx8jGUFXVTS FK15d6h16D9IMAGOX1AkQITauegBePSCTST/WSCEDrz9g=", "body" :
"{\"version\":\"O\" ,\"id\":\"982cf2fe-7956-7276-3bed-eedccd34af77\",\"detail -
type\":\"ObjectCreated\",\"source\":\"omniaware.rawdata.image.created\",

\"account\":\"713287343299\", \"time\" :\"2025-06-237T09:16:252\",\"region\" :\"eu-
central-1\",\"resources\": [],\"detail\" : {\"bucket\" :\"omniaware-dev-raw-images\",
\"key\" :\"2025/06/23/09/0aabIccc-87b7-4166-b7cf .3pa\"}}",
"attributes": {"ApproximateReceiveCount": "1", "AWSTraceHeader":

"Root=1-68591b66-3237947c84c5fb8d982f9855; Parent=52f56e10c8ab74a6 ; Sampled=0;Lineage

=2:d55447bb:0", "SentTimestamp": "1750670185834", "SenderId":
"AIDATSDDSHNBEXIAGJ64K", "ApproximateFirstReceiveTimestamp": "1750670185841"},
"messageAttributes”: {}, "mdSOfBody": "33b56d9ded776d8a756b7f3ac12cb26e",
"eventSource”: "aws:sqs", "eventSourceARN": "arn:aws:sgs:eu-
central-1:713287343299:0nni Aware-ImageProcessingQueue” , "awsRegion": "eu-
central-1"}1}

Number of records to process: 1

Processing object 2025/06/23/09/@aabdccc-87b7-4166-b7cf-995b6dSbbad2. jpg From
bucket omniaware-dev-raw-images

Detected texts: []

Detected labels for current image: ['Armored’, 'Military', 'Tank', 'Weapon',
"Turret']

Detected vehicle IDs for current image: []
Detected label categories for current image: {'Weapons and Military'}

Image classified as RESTRICTED based detected labels

Figure 4.16: CloudWatch - Logs for Image Ingestion: Log entries confirm Lambda
execution and partial labelling of visual features, including class labels such as Tank
and Armored.

Despite these partial successes, the ingestion pipeline exhibited limitations in downstream
handling. While the raw labelling results were correctly detected and logged, only incomplete
metadata entries were generated — ultimately preventing a consistent write to DynamoDB. As
shown in the logs, not all expected attributes (e.g. geolocation, structured vehicle descriptors)
were inferable for each detected entity. Consequently, no finalised entry for the sample was
persisted in the data store.

This behaviour aligns with design expectations: the underlying Lambda function halts
record propagation when required fields remain undefined, preserving schema integrity. It also
demonstrates the necessity of precise bounding box detection and attribute extraction for all
identified objects within the image, particularly when multiple vehicles are present.

In contrast, a prior test image featuring a single object (a toy tank model with licence plate
overlay) yielded a successful end-to-end flow. This suggests that image ingestion workflows
currently favour atomic, well-separated scenes over complex compositions, which require more
resilient object detection pipelines.

These results validate the ingestion interface from an operational perspective, while high-
lighting the importance of tighter coordination between image complexity, Al inference stability
and downstream data model mapping. Future iterations will benefit from enriched inference
metadata, stricter schema enforcement and fallback strategies for incomplete detections.

136

INSIGHTS

Summary: This chapter synthesises the empirical insights and design implications derived from
the implementation and evaluation of the OmniAware platform. It focuses on three architectural
pillars — cloud and edge computing, confidential computing and system interoperability —
and consolidates the practical lessons learned across heterogeneous deployments, prototype
validations and cross-account integrations.

The insights confirm the architectural soundness of enclave-backed secure infrastructure
components, highlight systemic limitations in serverless paradigms under enclave constraints
and validate the need for hybrid enforcement models combining managed cloud services with
runtime attestation and identity-bound execution logic. The findings also expose operational
trade-offs, including regional dependency of TEE services, orchestration overhead in enclave
migration and compliance complexities in zero-trust integrations.

Moreover, the interoperability evaluation revealed critical schema-level and policy-bound
integration challenges, both within standardised NGVA ingest flows and exploratory teleme-
try/image pipelines. Key lessons included the impact of runtime metadata enforcement, policy-
bound JWT validation and the strategic role of Vault in establishing hardened API gateways for
secure multi-account control.

Taken together, the findings offer tactical guidance for sovereign, mission-grade platform
design and establish a viable blueprint for MDO-aligned deployments, bridging cloud-native
technologies with coalition-ready enforcement primitives.

5.1 CLOUD AND EDGE COMPUTING

The implementation of cloud and edge capabilities within the OmniAware platform highlighted
both the operational complexity and architectural trade-offs inherent in hybrid deployments.
Using AWS EC2 instances and modular account separation for components such as Ingest,
Secure Infrastructure and Vault, the project reinforced the value of laC-based repeatability and
environment-specific control. However, several deployment-related insights emerged during
real-world implementation that hold direct relevance for sovereign, secure mission platforms.

One key observation was the strict dependency of certain AWS confidential computing
services on region-specific availability. For example, AMD SEV-SNP-enabled instance types
and AWS Nitro Enclaves are limited to selected regions, requiring careful planning of resource
locations during architecture design. This affects both scalability and cross-region portability —
a critical constraint when aiming for multinational or federated mission clouds. Additionally,
enabling these services is contingent not only on region and instance type, but also on AMI
version, hypervisor configuration and kernel compatibility, adding significant pre-deployment
complexity [56].

While SEV-SNP was successfully integrated and validated through remote attestation work-
flows using native attestation reports and JWT generation, AWS Nitro Enclaves introduced
additional hurdles due to the requirement for building and attaching enclave-compatible Docker
containers. This process demands tight alignment with AWS’ Nitro Enclaves C SDK and en-
clave definition — raising the implementation barrier, especially for projects requiring rapid
prototyping.

From a security architecture perspective, e.g. the GIT (Ingest) account served as a proving
ground for enforcing native security controls via CloudFormation. By leveraging AWS Guardrails
and IAM permissions boundaries, critical policies could be embedded directly into the stack
templates — demonstrating that policy-as-code and compliance-by-design principles can be
achieved natively within the AWS ecosystem. This contrasts favourably with external compliance
tooling often used in Terraform or Azure-based deployments, where organisational overlays are
typically required.

A key operational insight relates to the native security capabilities embedded in the AWS

137

INSIGHTS

IaC stack — in particular the use of Guardrails via CloudFormation templates. These guardrails
enable the declarative enforcement of policies (e.g. mandatory encryption, network restrictions,
role scoping) during infrastructure provisioning. This approach aligns with the compliance-by-
design paradigm and significantly reduces the attack surface by integrating security controls as
code. Compared to external policy engines in Terraform-based workflows or post-deployment
configuration scripts in other cloud environments, this mechanism offers a tightly coupled, veri-
fiable enforcement layer. Especially in regulated or defence-aligned deployments, such IaC-level
controls provide a robust foundation for auditable and zero-trust infrastructure baselines. Unlike
Terraform or Azure ARM-based deployments — where compliance logic often resides in loosely
coupled pipelines or third-party tooling — the AWS approach enables inline constraint embed-
ding directly within the deployment artefacts. This tight integration supports reproducibility,
enforces consistency across environments and allows modular policy reuse across accounts and
regions.

An operational insight relates to SSM, which enabled automated bootstrapping and remote
control of cloud resources without requiring direct SSH access. This streamlined deployment
processes and reduced exposure risk, particularly in secure zones. Compared to traditional
management interfaces, SSM offered improved integration with attestation-triggered workflows
and reduced the need for manually maintained bastion host architectures.

Regarding edge computing, the OmniAware architecture included conceptual extensions
for forward-deployed edge devices, particularly in the PHM scenario. However, practical de-
ployment and validation were not feasible due to constraints on physical infrastructure and
runtime environments. Despite this, design-time evaluations allowed for several key considera-
tions. Notably, edge platforms must account for limited or air-gapped connectivity, which may
inhibit online Remote Attestation, policy validation or secret provisioning. This introduces a
stark divergence from cloud-native assumptions and necessitates alternative strategies such as
embedded trust roots or pre-validated image bundles.

The broader comparison of platforms and tooling revealed noteworthy implications for
future mission platform design. The native cohesiveness of AWS (with integrated identity, teleme-
try and encryption services) proved advantageous over alternative solutions involving external
orchestration (e.g. Kubernetes-based TEE runtimes or cross-provider Terraform deployments).
These findings suggest that cloud-native security and automation can be leveraged effectively —
provided that architectural awareness of service constraints, regional availability and compliance
boundaries is embedded early in the design process. For sovereign deployments (e.g. NATO
private clouds or coalition-owned platforms), this necessitates explicit portability strategies and
abstraction layers to mitigate vendor lock-in and capability fragmentation.

5.2 CONFIDENTIAL COMPUTING

Confidential computing was implemented as a foundational architectural principle, not as a
post-hoc security enhancement. The prototype validated secure enclave bootstrapping, remote
attestation and conditional secret release by integrating AMD SEV-SNP-enabled EC2 instances,
JWT-based attestation and a policy-enforced Vault deployment. A dedicated CloudFormation
stack (15_cc-vault-poc.yaml) provisioned a fully functional Vault server capable of managing
encrypted payloads, policy-based transit key logic and attestation-anchored access control via
validated JWT claims.

While JWT formed the core of the attestation logic, alternative mechanisms such as TPM-
backed assertions and Intel SGX quoting protocols were conceptually assessed. In practice, only
SEV-SNP and AWS Nitro Enclave attestation mechanisms offered fully cloud-integrated trust
anchors via AWS APIs. SEV-SNP provided the most transparent and repeatable flow, using the
native snpguest utility for claim generation and report validation. While Vault was selected
for its maturity, extensibility and native ecosystem support, it was benchmarked against lighter
alternatives such as SPIRE and EnclaveOS-based attestation agents — highlighting trade-offs
between deployment complexity, trust depth and cloud-native alignment.

The implementation surfaced multiple operational challenges. These included strict re-
quirements for AMI kernel versions, enclave launch flags, Nitro Enclave definition constraints

138

5.2 CONFIDENTIAL COMPUTING

and Vault policy design. Establishing a reliable trust chain required iterative debugging across
enclave measurement reporting, JWT decoding, Vault AppRole and Transit Engine configura-
tions. Inconsistencies — such as mismatched ‘aud’ claims or invalid timestamps — repeatedly
triggered policy rejection until resolved through custom debugging scripts and log-augmented
policy evaluations.

Crucially, TLS encryption was not fully implemented during the PoC phase. While Vault
supported TLS endpoints, the setup lacked an integrated certificate lifecycle manager (e.g. AWS
Certificate Manager or HashiCorp Vault PKI Engine). This omission represented a critical gap
in trust anchor binding, exposing the system to potential Man-in-the-Middle (MitM) vectors in
multi-domain deployments. Similarly, public key rotation, revocation and authority management
were not operationalised — highlighting the importance of embedded PKI logic in production-
grade deployments.

Nonetheless, the implemented trust chain validated the end-to-end flow from enclave
measurement to conditional secret provisioning. This was most evident in deployments within the
Secure Infrastructure environment, where both a minimal Vault instance and a fully integrated
ingestion pipeline were tested. Verified JWTs from SEV-SNP-enabled instances were successfully
parsed and enforced via Vault, establishing auditable and cryptographically anchored runtime
policies.

In contrast, the GIT account provided the technical foundation for the broader multi-
account OmniAware platform, hosting the development of key components such as the Ingest,
Consumer, Datalake, Audit and Security stacks. Within the scope of this PoC, it served to validate
advanced API gateway deployments and demonstrate interoperability with ingestion flows and
telemetry pipelines. While Vault was not deployed in the GIT environment, the groundwork
was established to enable Vault-hardened API endpoints — positioning the GIT account as a
future-ready target for integrated policy enforcement and confidential ingress control.

Taken together, the findings reaffirm confidential computing as a mission-ready, extensible
security paradigm. However, real-world deployments must incorporate complete PKI manage-
ment, automated certificate provisioning and full TLS enablement to harden the underlying
trust infrastructure. With these enhancements, the blueprint established by this PoC can scale
into coalition-grade defence platforms that are verifiable, composable and operational under
adversarial conditions.

Yet, adopting SEV-SNP comprehensively across a heterogeneous cloud landscape introduces
systemic design challenges. Serverless services — such as Lambda functions, Step Functions or
managed control plane components — do not natively run within TEE-enabled environments.
This limitation arises from the very nature of serverless: workloads are dynamically instantiated
in isolated, short-lived compute containers managed entirely by the platform provider, offer-
ing neither control over instance types nor the ability to inject custom launch flags or kernel
parameters required for enclave initialisation.

Consequently, enforcing consistent enclave-based trust boundaries requires rearchitecting
such services to execute within dedicated SEV-SNP-backed compute instances. This transition
would entail containerisation or workload migration, coupled with reimplementation of orches-
tration logic (e.g. retries, scaling, triggers) previously abstracted by platform services. Without
direct control over the ephemeral compute layer, serverless paradigms remain fundamentally
incompatible with attestation-driven trust chains, highlighting the trade-off between operational
abstraction and fine-grained security enforcement in sovereign computing scenarios.

The implication is twofold: First, zero-trust guarantees tied to enclave-backed execution
environments cannot yet be assumed for all control flow paths in serverless-first architectures.
Second, the benefits of confidential computing — verifiable trust, runtime encryption and
conditional secret access — can only be systematically extended through conscious trade-offs in
automation, operational overhead and cloud-native abstraction layers.

Therefore, future deployments must strategically identify mission-critical services that
justify enclave migration and selectively retain managed services where risk profiles permit. A
hybrid enforcement architecture — combining enclave-anchored trust for core telemetry and
policy logic with hardened, identity-bound platform services — may offer a realistic path forward
until TEE-backed primitives gain broader platform integration.

139

INSIGHTS

5.3 INTEROPERABILITY

Interoperability within the OmniAware architecture was pursued at three levels: data model
standardisation, interface design and deployment modularity. The ingestion interfaces were
aligned with NGVA JSON formats, while telemetry and image data were prepared using
consistent encoding, schema enforcement and metadata annotations.

The Secure Ingest API, validated within the PHM scenario, allowed structured JSON
ingestion (as per the simplified NGVA sample) and unstructured image submission with base64-
encoded payloads. CloudWatch traces confirmed Lambda invocations and data processing
flows across all ingestion channels. Vault-based key management, though not yet active in this
scenario, was fully prepared to support conditional decryption and validation per workload
through attestation-bound JWTs.

A key insight was the necessity to define clear interface boundaries not only between
producer and consumer systems, but also between policy-enforced and policy-free domains. The
use of cross-account S3 bucket access, IAM boundary conditions and Lambda triggers enabled a
high degree of modularity, while simultaneously introducing non-trivial complexity in policy
validation and runtime enforcement.

Beyond the Secure Infrastructure deployment, the GIT account provided the required
components. While Vault was not deployed in this environment, API gateway prototypes were
extended to validate telemetry and image flows under more realistic and mission-oriented
ingestion conditions. These tests, although slightly divergent from the original PHM use case,
revealed critical insights into schema fidelity, runtime constraints and the interplay of service
integration under federation-grade workloads.

Interoperability assessments highlighted several technical nuances:

¢ Enforcement of metadata consistency for image payloads was crucial to enable downstream
control logic and ingestion traceability.

* Schema-bound interfaces exposed subtle alignment frictions within asynchronous AWS-
native workflows and serverless ingestion channels.

* Early-stage security evaluations revealed the need for standardised tag structures, identity
headers and future JWT-based validation at API ingress points.

Security controls applied during the PoC included S3 policy scoping, strict IAM enforcement
and Lambda runtime constraints. These were sufficient for modular ingest validation, yet
future deployments should incorporate Vault-integrated JWT decoding, signed telemetry claims
and policy-bound enforcement logic. Additional hardening options include the use of SCPs
conditional token validation and ingress pre-validation workflows.

Despite the fragmented state of federated standards in military systems, this PoC demon-
strated that secure, modular and NAFv4-aligned interoperability can be achieved through schema
alignment, runtime attestation and minimal interfaces backed by strong control logic. These
results establish a blueprint for resilient API design and interoperability strategies in future
MDO architectures, particularly under mission-grade, coalition-ready constraints.

Beyond telemetry and API gateway hardening, the results demonstrated the broader applica-
bility of confidential computing. Runtime enforcement logic could be extended to ingress/egress
control systems, encrypted image pipelines, operator dashboards, or any compute-bound com-
ponent with secret-bound state logic. These trust extensions are programmable via Vault’s
dynamic secrets model and scalable to operational blueprints.

From an architectural perspective, three extensibility levers were validated: (1) enclave-based
validation for signed configuration files; (2) runtime authentication for control plane commands;
and (3) zero-trust enforcement for microservice workloads. Each pathway builds upon the
same attestation logic — providing a modular, reproducible enforcement pattern aligned with
zero-trust and data-sovereign computing principles.

Taken together, the findings reaffirm confidential computing as a mission-ready, extensible
security paradigm. However, real-world deployments must incorporate complete PKI manage-
ment, automated certificate provisioning and full TLS enablement to harden the underlying
trust infrastructure. With these enhancements, the blueprint established by this PoC can scale

140

5.3 INTEROPERABILITY

into coalition-grade defence platforms that are verifiable, composable and operational under
adversarial conditions.

Yet, adopting SEV-SNP comprehensively across a heterogeneous cloud landscape introduces
systemic design challenges. Serverless services — such as Lambda functions, Step Functions or
managed control plane components — do not natively run within TEE-enabled environments.
Consequently, enforcing consistent enclave-based trust boundaries requires rearchitecting such
services to execute within dedicated SEV-SNP-backed compute instances. This transition would
entail containerisation or workload migration, coupled with reimplementation of orchestration
logic (e.g. retries, scaling, triggers) previously abstracted by platform services.

The implication is twofold: First, zero-trust guarantees tied to enclave-backed execution
environments cannot yet be assumed for all control flow paths in serverless-first architectures.
Second, the benefits of Confidential Computing — verifiable trust, runtime encryption and
conditional secret access — can only be systematically extended through conscious trade-offs in
automation, operational overhead and cloud-native abstraction layers.

Therefore, future deployments must strategically identify mission-critical services that
justify enclave migration and selectively retain managed services where risk profiles permit. A
hybrid enforcement architecture — combining enclave-anchored trust for core telemetry and
policy logic with hardened, identity-bound platform services — may offer a realistic path forward
until TEE-backed primitives gain broader platform integration.

141

CONCLUSION

Summary: This concluding chapter synthesises the research findings by revisiting the three
research questions and aligning them with the practical implementation results of the OmniAware
PoC. The evaluation confirmed that a NAFv4-compliant defence cloud architecture can be
systematically modelled using the ArchiMate language and open-source tooling, enabling
traceable system design and capability-driven compliance. Furthermore, the thesis validated
the applicability of confidential computing through hardware-enforced enclaves and remote
attestation protocols, enabling secure workload protection and cryptographic key isolation
even under adversarial threat conditions. Interoperability across cloud, edge and HPC domains
was addressed via federated attestation mechanisms, decentralised identity management and
enclave-integrated microcontroller concepts.

While the PoC demonstrates the technical viability of the proposed platform, the outlined
Outlook section highlights several strategic extensions — including RT fleet monitoring, Digital
Twin integration and Al-driven decision support — to further enhance mission readiness and
operational agility.

From a defence transformation perspective, this work positions OmniAware as a transferable
and doctrine-compatible blueprint for secure digital military infrastructures. Based on the
achieved outcomes and demonstrator maturity, follow-on activities are expected — potentially
as successive proof-of-concept implementations or scaled deployments with prospective defence
stakeholders.

The lessons gained not only validate platform feasibility but also contribute to a broader
methodological foundation for sovereign, resilient and alliance-integrated defence cloud systems.
Looking ahead, the OmniAware platform provides a promising baseline for strategic alignment
with future NATO, EU and national defence digitalisation agendas. As geopolitical pressures and
technological complexity increase, the demand for verifiable, mission-ready platforms capable
of operating across multi-domain theatres will grow. Continued iteration and alignment with
operational feedback will be key to scaling the platform towards production-grade defence
infrastructure.

6.1 EVALUATION

With the accomplished investigation, the research questions could be answered as follows.

RQ1: How can a cloud-native defence architecture be designed to ensure compliance with
the NATO Architecture Framework Version 4 (NAFv4) while supporting secure and scalable
mission-critical operations?

The research demonstrated that a NAFv4-aligned defence architecture can be effectively
designed and deployed using a viewpoint-driven methodology grounded in the ArchiMate
modelling language and the open-source modelling tool Archi. The architecture strictly follows
the layered construct of NAFv4 — from capability-based planning (NCV) to deployment artefacts
(NPV) — ensuring semantic traceability, design-time modularity and mission-driven extensibility.

The conceptual architecture incorporates Infrastructure-as-Code (IaC) principles for end-to-
end automation, Kubernetes-based orchestration and containerised microservices — especially in
the context of future platform-level deployments. However, the actual prototype implementation
focused on EC2-based confidential nodes, specifically using AMD SEV-SNP and Nitro Enclaves
to simulate trusted execution environments. These were evaluated in isolated test scenarios
to explore the feasibility of attestation-enabled workloads and secure secret management in
mission-relevant conditions.

Compared to traditional static architectures, the proposed approach facilitates dynamic
service composition and enforces policy constraints already at deployment time. Moreover,

143

CONCLUSION

the explicit modelling of capability-to-service mappings supports coalition interoperability
and auditability in multinational missions — an essential aspect given the federated nature of
NATO-led operations.

Nevertheless, a current limitation lies in the absence of automated semantic validation
between logical views (NLV) and platform deployments (NPV), which may lead to mismatches
if not manually aligned. Future work could address this via model-driven policy enforcement or
ontology-supported validation pipelines.

Overall, the proposed architecture meets NAFv4 compliance criteria by design and serves
as a reference blueprint for secure, scalable and sovereign military-grade cloud environments.
The applied methodology is viable and extensible, aligning with NATO’s digitalisation goals
and the operational demand for mission-centric system resilience.

RQ2: What are the key security challenges in defence cloud infrastructures and how can a
confidential computing-based security model be validated to ensure compliance with defence
security standards?

The key challenges in defence-oriented cloud infrastructures revolve around securing data-
in-use, maintaining federated trust across sovereign domains and ensuring runtime protection
under disconnected or adversarial network conditions. Traditional perimeter- or VM-based
security controls prove insufficient under such mission conditions, prompting the need for
hardware-anchored isolation strategies.

This research explored the use of confidential computing capabilities via SEV-SNP and
Nitro Enclaves to provision secure execution environments for sensitive workloads. By leveraging
hardware-backed TEEs, the architecture enabled the foundational setup for attestation-driven
key release and policy-enforced access control through Vault. A partially automated Remote
Attestation workflow was prototyped on EC2 instances, covering the generation of JWTs, Vault
role binding and the use of the Transit Secret Engine for encryption and audit logging. While
vsock-based communication between parent and enclave processes was functionally utilised
(e.g. for retrieving container output), it remained outside the formal evaluation scope and was
not subject to explicit security or performance assessment.

Rather than deploying a fully integrated container-based pipeline, the evaluation focused
on standalone EC2-based test setups within the PHM and CIVS scenarios. These testbeds aimed
to assess the feasibility of embedding attestation and secure secret management mechanisms in
accordance with international defence standards, including STANAG 4774/4778 and AC322-D, in
order to establish auditable and assurance-ready infrastructure under mission-level constraints.

Compared to traditional TPM-centric approaches, the selected confidential computing
paradigm offers enhanced flexibility for runtime validation and policy enforcement across
sovereign boundaries. However, notable implementation gaps remain — including missing
container-level attestation chains, limited policy granularity and the absence of a fully automated
attestation-to-enforcement control flow — pointing to the need for abstracted trust anchors, more
streamlined tooling and refined integration patterns.

However, several limitations must be acknowledged: (1) current implementations lack fine-
grained user-level attestation semantics, (2) the complexity of onboarding confidential computing
workloads remains high and (3) secure multi-tenancy under full isolation is not yet feasible
without further platform extensions. These constraints highlight the need for simplified trust
anchors, more abstracted developer tooling and automated attestation trust pipelines.

Therefore, the evaluated security concept illustrates the potential of confidential computing
for sovereign-grade defence architectures and provides a validated entry point for future zero-
trust compliant deployments in coalition-ready mission platforms.

In summary, the security model validates the practical use of confidential computing in
real-world military scenarios, bridging Zero Trust principles with defence interoperability re-
quirements. It sets a precedent for scalable, verifiable and standard-compliant mission workloads
in coalition-grade cloud infrastructures.

144

6.2 OUTLOOK

RQ3: How can interoperability between cloud, edge and HPC environments be ensured in a
defence cloud infrastructure while maintaining security and operational efficiency?

Ensuring interoperability across heterogeneous execution environments — including
sovereign cloud regions, forward-deployed edge devices and HPC backends — poses substantial
architectural challenges. These stem from differing trust domains, communication paradigms
and performance expectations.

To address these challenges, the proposed defence cloud architecture incorporates federated
attestation, secure API endpoints and decentralised identity management. A draft version of
the Secure Ingestion Gateway was prepared to support encrypted telemetry via gRPC-based
data pipelines and policy-controlled access via Vault. However, core hardening measures such
as TLS enforcement and attestation-validated request filtering have not yet been fully integrated.
Current edge TEEs remain limited in terms of microcontroller compatibility, attestation depth
and cryptographic throughput. In particular, the absence of lightweight attestation frameworks
hampers integration with resource-constrained sensor platforms.

Two variants of the ingestion gateway were prototyped in separate operational contexts:
one focused on telemetry and image ingestion for validation in the GroupIT account and one
targeting secure deployment and testing within the AWS Guild environment. While initial
ingestion flows relied on enclave-enabled EC2 nodes, the full implementation of container-level
attestation and Vault-backed key release for the gateway remains an open item for future work.

Standardised message schemas and interface definitions were followed where possible,
laying a foundation for secure service integration. Nevertheless, current deployments only
partially realise the envisioned trust model and highlight remaining gaps in operational maturity
and zero-trust enforcement.

Future work should focus on incorporating support for emerging embedded TEEs platforms
such as OP-TEE and on harmonising secure ingestion mechanisms across coalition partners via
open standards and portable trust anchors.

Overall, the architecture presents a viable model for enabling secure and interoperable
mission dataflows across tactical edge, operational cloud and strategic HPC layers — fulfilling
core requirements for next-generation military intelligence and operations platforms.

6.2 OUTLOOK

While the presented implementation validates core components of the OmniAware platform,
several opportunities for enhancement, operational scaling and strategic integration remain.
These are categorised below into near-term extensions and long-term strategic recommendations.

The integration of secure telemetry pipelines with RT fleet and unit monitoring capabilities
represents a foundational enhancement for mission-critical operations. Ingested sensor data —
once cryptographically verified — can be used to assess platform readiness, operational reliability
and tactical performance in near real time. This enables advanced mission oversight, anomaly
detection and dynamic reconfiguration of assets within trusted compute environments.

As a potential extension, digital twin simulation systems could be incorporated to enable
predictive maintenance, scenario-based training and tactical what-if simulations. Enclaved simu-
lation agents may further ensure that sensitive mission models are executed within TEE-protected
environments, preserving confidentiality and operational integrity.

The confidential analytics layer may be extended to include Al-based decision support,
enabling secure inference on encrypted data streams for anomaly detection, command recom-
mendations and mission-level optimisation — particularly in contested or coalition-led theatres.
In the long term, integration with autonomous and semi-autonomous systems (e.g. UAVs, UGVs)
could be explored, with TEEs enforcing operational boundaries for rules of engagement.

From a strategic standpoint, the convergence of confidential computing, data sovereignty
and NAFv4-compliant architecture establishes a new doctrine for trusted digital defence plat-
forms. It enables command structures to rely on verifiable system states, distribute trust across
organisational boundaries and adopt flexible cloud-native deployments without compromising
control or compliance. The proposed methodology can inform procurement guidelines, certi-

145

CONCLUSION

fication frameworks and future mission platform architectures — positioning OmniAware as a
transferable blueprint for next-generation sovereign defence systems.

In this context, continued reference to the NAFv4 architectural model is encouraged — not
only for aligning capability decomposition and view-driven planning but also as a strategic
guide for implementation phases across federated deployments. Emerging solutions such as
Kata Containers remain promising in enabling remote attestation within containerised Kuber-
netes environments, offering enhanced workload isolation and runtime integrity verification.
Additionally, the integration of HashiCorp Vault and associated attestation workflows can be
further expanded beyond the current use cases, serving as a robust building block for hardening
identity, access and secret management across the entire system landscape.

The OmniAware platform represents a significant step towards realising a secure, scalable
and interoperable defence cloud architecture. By embedding confidential computing principles
and aligning with NAFv4 standards, the implementation provides a robust foundation for
future military operations in multi-domain environments. The insights gained from this PoC
are expected to directly inform follow-on engagements — whether in the form of successive
proof-of-concept implementations or full-scale pilot projects with prospective end-users. As
the demand for trustworthy digital platforms continues to rise, the adaptability of OmniAware
ensures its viability for integration into evolving operational ecosystems and long-term capability
roadmaps. Operational feedback loops will play a decisive role in transforming the platform
from prototype to field-ready capability.

146

REFERENCES

REFERENCES

(1]

(2]

3]

[10]

[11]

[12]

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75-105, 2004, 1ssN: 0276-7783.
DOI: 10.2307/25148625.

P. M. Mell and T. Grance, The nist definition of cloud computing, Gaithersburg, MD,
2011. por: 10.6028/NIST.SP.800-145.

E. Zyp et al, Json schema: A media type for describing json documents (draft-04),
https://json-schema.org/draft-04/draft-zyp- json-schema-04, Accessed:
2025-06-25, 2013.

M. C. Nguyen and H. S. Won, “Data storage adapter in big data platform,”
Proceedings - 8th International Conference on Database Theory and Application, DTA
2015, pp. 6-9, Mar. 2016. por1: 10.1109/DTA.2015.9.

“STANAG 4774: Confidentiality Metadata Labelling Structure,” NATO Standard-
ization Office, Brussels, Tech. Rep. STANAG 4774, Dec. 2017, Edition 1. Version
1.

X. Huang and R. Chen, “A survey of key management service in cloud,” Proceedings
of the IEEE International Conference on Software Engineering and Service Sciences,
ICSESS, vol. 2018-November, pp. 916-919, Jul. 2018, 1ssN: 23270594. por: 10.1109/
ICSESS.2018.86638065.

NATO Standardization Office, AEP-4754 vol vi: Architecture framework for tactical
land sensor systems, https://nso.nato.int/, STANAG 4754 Edition 1, Volume VI,
NATO Architecture Framework Guidance for Land-Based Tactical Sensor Systems,
2018. [Online]. Available: https://nso.nato.int/.

“STANAG 4778: Confidentiality Metadata Handling,” NATO Standardization
Office, Brussels, Tech. Rep. STANAG 4778, Oct. 2018, Edition 1. Version 1.

E. C.Yildiz, M. S. Aktas, O. Kalipsiz, A. N. Kanli, and U. O. Turgut, “Data mining
library for big data processing platforms: A case study-sparkling water platform,”
UBMK 2018 - 3rd International Conference on Computer Science and Engineering,
pp. 167-172, Dec. 2018. por: 10.1109/UBMK.2018.8566278.

“AC/322-D/0048-REV3 (INV): CIS Security Technical and Implementation Direc-
tive,” NATO Consultation, Command and Control Board (C3B), Brussels, Tech.
Rep. AC/322-D/0048-REV3 (INV), Nov. 2019, Supersedes AC/322-D/0048-REV2.

Bundesamt fiir Sicherheit in der Informationstechnik (BSI), “Cloud Computing
Compliance Criteria Catalogue C5:2020,” Bundesamt fiir Sicherheit in der In-
formationstechnik (BSI), Bonn, Germany, Tech. Rep., 2020, Version 2020, English
Translation. Accessed: May 31, 2025. [Online]. Available: https://www.bsi.bund.
de / SharedDocs /Downloads /EN/BSI/CloudComputing /Compliance _Criteria_
Catalogue _C5/Cloud _Computing_Compliance_Criteria_Catalogue_C5_2020.
pdf.

T. Jiao and A. Luo, “Probabilistic framework for evaluating the capability and
resilience of c4isr using bayesian networks,” Proceedings - 2020 7th International
Conference on Information Science and Control Engineering, ICISCE 2020, pp. 1031-
1036, Dec. 2020. po1: 10.1109/ICISCE50968.2020.00211.

147

https://doi.org/10.2307/25148625
https://doi.org/10.6028/NIST.SP.800-145
https://json-schema.org/draft-04/draft-zyp-json-schema-04
https://doi.org/10.1109/DTA.2015.9
https://doi.org/10.1109/ICSESS.2018.8663805
https://doi.org/10.1109/ICSESS.2018.8663805
https://nso.nato.int/
https://doi.org/10.1109/UBMK.2018.8566278
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/Compliance_Criteria_Catalogue_C5/Cloud_Computing_Compliance_Criteria_Catalogue_C5_2020.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/Compliance_Criteria_Catalogue_C5/Cloud_Computing_Compliance_Criteria_Catalogue_C5_2020.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/Compliance_Criteria_Catalogue_C5/Cloud_Computing_Compliance_Criteria_Catalogue_C5_2020.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/CloudComputing/Compliance_Criteria_Catalogue_C5/Cloud_Computing_Compliance_Criteria_Catalogue_C5_2020.pdf
https://doi.org/10.1109/ICISCE50968.2020.00211

REFERENCES

[13]

[14]

[15]

[19]

[20]

148

Z.Jiao, J. Zhang, P. Yao, L. Wan, and L. Ni, “Service deployment of c4isr based
on genetic simulated annealing algorithm,” IEEE Access, vol. 8, pp. 65498-65512,
2020, 1ssN: 21693536. por: 10.1109/ACCESS.2020.2981624.

F. Y. Rashid, “What Is Confidential Computing?” IEEE Spectrum, 2020. [Online].
Available: https://spectrum.ieee.org/what-is-confidential-computing.

M. Rouse, What is edge computing? [...] TechTarget, SearchDataCenter, 2020. Ac-
cessed: Apr. 27,2025. [Online]. Available: https://searchdatacenter.techtarget.
com/.

J. Barton, “High performance computing for science and engineering in the de-
partment of defense,” Computing in Science and Engineering, vol. 23, pp. 58-62, 6
2021, 1ssN: 1558366X. por1: 10.1109/MCSE.2021.3112288.

A. Hutomo et al., “Evaluating the interoperability of c4isr system using cyber
six-ware framework,” 2021 International Conference on Advanced Computer Science
and Information Systems, ICACSIS 2021, 2021. por: 10.1109/ICACSIS53237.2021.
9631359.

Z. Jiao, J. Zhang, P. Yao, L. Wan, and X. Wang, “C4isr service deployment based
on an improved quantum evolutionary algorithm,” IEEE Transactions on Network
and Service Management, vol. 18, pp. 2405-2419, 2 Jun. 2021, 1ssN: 19324537. por:
10.1109/TNSM.2021.3054752.

D. P. Mulligan, G. Petri, N. Spinale, G. Stockwell, and H. J. M. Vincent, “Con-
tidential computing—a brave new world,” in 2021 International Symposium on
Secure and Private Execution Environment Design (SEED), 2021, pp. 132-138. por:
10.1109/SEED51797.2021.00025.

NATO Communications and Information Security Sub-Committee, “AC/322-
D(2021)0032-REV1-U: NATO Security Instruction - Cloud Computing,” North At-
lantic Treaty Organization (NATO), Draft Security Instruction AC/322-D(2021)0032-
REV1-U, 2021, Restricted Distribution, retrieved internally for academic purposes.
Accessed: May 31, 2025. [Online]. Available: https://www.nato.int/.

H. Won, M. C. Nguyen, M. S. Gil, and Y. S. Moon, “An advanced open data
platform for integrated support of data management, distribution, and analysis,”
Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021, pp. 2058-
2063, 2021. po1: 10.1109/BIGDATAB2589.2021.9671504.

A. Akram, V. Akella, S. Peisert, and J. Lowe-Power, “SoK: Limitations of Confiden-
tial Computing via TEEs for High-Performance Compute Systems,” in International
Symposium on Secure and Private Execution Environment Design (SEED), 2022, pp. 121~
132. po1: 10.1109/SEED55351.2022.00018.

N. Buchner, “Survey on Trusted Execution Environments,” eng, 2022. por: 10.
2313/NET-2022-07-1_05.

Bundesamt fiir Sicherheit in der Informationstechnik (BSI), Referenztabelle C5:2022
zu ISO/IEC 27001:2022, https://www.bsi.bund.de/DE/Themen/Unternehmen-und-
Organisationen/Informationen-und-Empfehlungen/Cloud- Computing/C5/C5.
html, Excel-Dokument zur strukturierten Referenzierung zwischen C5:2022 und

ISO/IEC 27001:2022, 2022. Accessed: May 31, 2025.

https://doi.org/10.1109/ACCESS.2020.2981624
https://spectrum.ieee.org/what-is-confidential-computing
https://searchdatacenter.techtarget.com/
https://searchdatacenter.techtarget.com/
https://doi.org/10.1109/MCSE.2021.3112288
https://doi.org/10.1109/ICACSIS53237.2021.9631359
https://doi.org/10.1109/ICACSIS53237.2021.9631359
https://doi.org/10.1109/TNSM.2021.3054752
https://doi.org/10.1109/SEED51797.2021.00025
https://www.nato.int/
https://doi.org/10.1109/BIGDATA52589.2021.9671504
https://doi.org/10.1109/SEED55351.2022.00018
https://doi.org/10.2313/NET-2022-07-1_05
https://doi.org/10.2313/NET-2022-07-1_05
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Cloud-Computing/C5/C5.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Cloud-Computing/C5/C5.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Informationen-und-Empfehlungen/Cloud-Computing/C5/C5.html

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

REFERENCES

N. Figueira, P. Pochmann, A. Oliveira, and E. P. D. Freitas, “A c4isr application
on the swarm drones context in a low infrastructure scenario,” International
Conference on Electrical, Computer, and Energy Technologies, ICECET 2022, 2022. po1:
10.1109/ICECET55527.2022.9872941.

T. Geppert, S. Deml, D. Sturzenegger, and N. Ebert, “Trusted Execution Environ-
ments: Applications and Organizational Challenges,” English, Frontiers in Computer
Science, vol. 4, p. 78, 2022. por: 10.3389/fcomp.2022.930741. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741/full.

M. Khanuja and S. Subramanian, Applied Machine Learning and High-Performance
Computing on AWS. Packt Publishing, 2022, 1sBN: 978-1803237015. [Online]. Avail-
able: https://www.amazon.com/Applied-Machine-Learning-High-Performance-
Computing/dp/1803237015.

P. Silver, Increase military readiness with aws iot for defense and national security,
Accessed: 2025-04-27, 2022. [Online]. Available: https : // aws . amazon . com/
blogs/iot/increase-military-readiness-with-aws-iot-for-defense-and-
national-security/.

Amazon Web Services, Understand coordinate systems and sensor fusion, Accessed:
2025-04-27, 2023. [Online]. Available: https://docs.aws.amazon.com/sagemaker/
latest/dg/sms-point-cloud-sensor-fusion-details.html.

Amazon Web Services, What is a landing zone? - aws prescriptive guidance, https:
//docs . aws . amazon . com/ prescriptive - guidance /latest /migration- aws -
environment/understanding-landing-zones.html, Accessed: June 2025, 2023.

Amazon Web Services, Inc. “High Performance Computing (HPC). “[Online].
Available: https://aws.amazon.com/hpc/.

AMD. “AMD Secure Encrypted Virtualization (SEV) - AMD. ”[Online]. Available:
https://developer.amd.com/sev/.

“Azure Confidential Computing — Protect Data In Use. “[Online]. Available: https:
//azure.microsoft.com/en-us/solutions/confidential-compute/#overview.

K. Chen, “Confidential high-performance computing in the public cloud,” IEEE
Internet Computing, vol. 27, pp. 24-32, 1 Jan. 2023, 1ssN: 19410131. por: 10.1109/
MIC.2022.3226757.

Confidential Computing Consortium. “Confidential Computing Whitepapers.
”[Online]. Available: https://www.confidentialcomputing.io/white-papers-
reports/.

B. S. Institution, ISO/IEC 22123-2:2023 - Information technology - Cloud computing -
Part 2: Concepts. London: British Standards Institution, 2023.

Intel. “Confidential Computing.” en. [Online]. Available: https://www.intel.
com/content/www/us/en/security/confidential-computing.html.

OpenStack. “Open Source Cloud Computing Infrastructure - OpenStack. “[Online].
Available: https://www.openstack.org/.

V. Pfeil, “Seminar work: High performance computing: Trusted execution en-
vironments,” University of the Bundeswehr, Department of Computer Science,
Institute for Software Technology, Tech. Rep., Mar. 2023. [Online]. Available: https:
//www.unibw.de/inf2.

149

https://doi.org/10.1109/ICECET55527.2022.9872941
https://doi.org/10.3389/fcomp.2022.930741
https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741/full
https://www.amazon.com/Applied-Machine-Learning-High-Performance-Computing/dp/1803237015
https://www.amazon.com/Applied-Machine-Learning-High-Performance-Computing/dp/1803237015
https://aws.amazon.com/blogs/iot/increase-military-readiness-with-aws-iot-for-defense-and-national-security/
https://aws.amazon.com/blogs/iot/increase-military-readiness-with-aws-iot-for-defense-and-national-security/
https://aws.amazon.com/blogs/iot/increase-military-readiness-with-aws-iot-for-defense-and-national-security/
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-sensor-fusion-details.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-point-cloud-sensor-fusion-details.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/understanding-landing-zones.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/understanding-landing-zones.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/understanding-landing-zones.html
https://aws.amazon.com/hpc/
https://developer.amd.com/sev/
https://azure.microsoft.com/en-us/solutions/confidential-compute/#overview
https://azure.microsoft.com/en-us/solutions/confidential-compute/#overview
https://doi.org/10.1109/MIC.2022.3226757
https://doi.org/10.1109/MIC.2022.3226757
https://www.confidentialcomputing.io/white-papers-reports/
https://www.confidentialcomputing.io/white-papers-reports/
https://www.intel.com/content/www/us/en/security/confidential-computing.html
https://www.intel.com/content/www/us/en/security/confidential-computing.html
https://www.openstack.org/
https://www.unibw.de/inf2
https://www.unibw.de/inf2

REFERENCES

[40]

[44]

[45]

150

A. Susanto, A. H. Fathulloh, Nuryasin, and A. Fitriyani, “Comparative analysis
of key management service performance on aws, google cloud, and oracle cloud
with performance testing,” 2023 11th International Conference on Cyber and IT Service
Management, CITSM 2023, 2023. por1: 10.1109/CITSM60085.2023.10455569.

VMware. “Virtualizing High Performance Computing. “[Online]. Available: https:
//www.vmware.com/uk/solutions/high-performance-computing.html.

S. Zobaed and M. A. Salehi, “Confidential computing across edge-to-cloud for
machine learning: A survey study,” Jul. 2023. [Online]. Available: https://arxiv.
org/abs/2307.16447v1.

“AC/322-D(2021)0032-REV1: Technical Directive on Cloud-Based Handling of
NATO-Classified Information,” NATO Consultation, Command and Control Board
(C3B), Brussels, Tech. Rep. AC/322-D(2021)0032-REV1, Mar. 2024, Releasable to
NATO nations and partners.

Amazon Web Services, Aws well-architected framework, https://docs.aws.amazon.

com/wellarchitected/latest/framework/welcome . html, Last accessed May
2025, 2024.

Amazon Web Services, aws-nitro-enclaves-sdk-c: C SDK for AWS Nitro Enclaves,
https://github. com/aws/aws-nitro-enclaves-sdk-c, Accessed: 2025-06-22,
2024.

M. Brossard et al., “Private delegated computations using strong isolation,” IEEE
Transactions on Emerging Topics in Computing, vol. 12, pp. 386-398, 1 2024, 1SSN:
21686750. por: 10.1109/TETC.2023.3281738.

Cloud Native Computing Foundation, Confidential containers project, CNCF Project
Website, https://confidentialcontainers.org/, 2024.

J. Gracewell, R. Santhosh, and V. Sabarish, “Image fusion for improved situational
awareness in military operations using machine learning,” 2024 2nd International
Conference on Advances in Computation, Communication and Information Technology,
ICAICCIT 2024, pp. 733-737, 2024. po1: 10.1109/ICAICCIT64383.2024.10912129.

H. Hussain et al., “Energy efficient real-time tasks scheduling on high-performance
edge-computing systems using genetic algorithm,” IEEE Access, vol. 12, pp. 54 879-
54 892, 2024, 1ssN: 21693536. po1: 10.1109/ACCESS. 2024 .3388837.

J. R. Kancharla and S. D. M. Kumar, “Advancing data sovereignty in distributed
environments: An in-depth exploration of data localization challenges,” 2024
International Conference on Computer, Electronics, Electrical Engineering and their
Applications, IC2E3 2024, 2024. por: 10.1109/IC2E362166.2024.10827688.

A. Karcher, “Enterprise architecture and it service management (eaitsm) - kapitel
3: The open group architecture framework (togaf),” Institut fiir Softwaretechnik,
Universitdt der Bundeswehr Miinchen, Technical Report, 2024.

A. Karcher, “Enterprise architecture and it service management (eaitsm) - kapitel
5: Archimate,” Institut fiir Softwaretechnik, Universitit der Bundeswehr Miinchen,
Technical Report, 2024.

A. Karcher, “Enterprise architecture and it service management (eaitsm) - kapitel
7: Nato architecture framework (naf),” Institut fiir Softwaretechnik, Universitat
der Bundeswehr Miinchen, Technical Report, 2024.

https://doi.org/10.1109/CITSM60085.2023.10455569
https://www.vmware.com/uk/solutions/high-performance-computing.html
https://www.vmware.com/uk/solutions/high-performance-computing.html
https://arxiv.org/abs/2307.16447v1
https://arxiv.org/abs/2307.16447v1
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
https://github.com/aws/aws-nitro-enclaves-sdk-c
https://doi.org/10.1109/TETC.2023.3281738
https://confidentialcontainers.org/
https://doi.org/10.1109/ICAICCIT64383.2024.10912129
https://doi.org/10.1109/ACCESS.2024.3388837
https://doi.org/10.1109/IC2E362166.2024.10827688

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

REFERENCES

H. Li, Z. Wy, F. Yin, C. Yang, and X. Yang, “A study on risk situational awareness
of power iot distribution scenarios under cloud-edge collaboration,” 2024 4th
International Conference on Intelligent Power and Systems, ICIPS 2024, pp. 824-828,
2024. por: 10.1109/ICIPS64173.2024.10900147.

R. Nagarkar, C. Bennie, K. Wang, M. Lam, D. Gonzalez, and M. B. Chaudhari,
“Integrating multiple cloud platforms to build a data pipeline for recommenda-
tion systems,” Proceedings - 2024 7th International Conference on Data Science and
Information Technology, DSIT 2024, 2024. por: 10.1109/DSIT61374.2024.10881634.

V. Pfeil, “Bachelor thesis: Confidential computing via hardware trusted execution
environments by an openstack hpc capable cloud,” University of the Bundeswehr,
Department of Computer Science, Institute for Software Technology, Tech. Rep.,
Jan. 2024.

V. Pfeil, “Internship report: Optimisation of iav ai cloud infrastructure,” Univer-
sity of the Bundeswehr, Department of Computer Science, Institute for Software
Technology, Tech. Rep., Oct. 2024.

F. A. Saif, R. Latip, Z. M. Hanapi, K. Shafinah, A. V. S. Kumar, and A. S. Bajaher,
“Multi-objectives firefly algorithm for task offloading in the edge-fog-cloud com-
puting,” IEEE Access, 2024, 1ssN: 21693536. por: 10.1109/ACCESS . 2024 .3488032.

I. Satoh, “A general-purpose middleware system for edge-side data processing,”
2024 9th International Conference on Fog and Mobile Edge Computing, FMEC 2024,
pp- 190-195, 2024. por: 10.1109/FMEC62297.2024.10710251.

J. Thijsman, M. Sebrechts, F. D. Turck, and B. Volckaert, “Trusting the cloud-
native edge: Remotely attested kubernetes workers,” Proceedings - International
Conference on Computer Communications and Networks, ICCCN, May 2024, 1ssN:
10952055. por: 10.1109/ICCCN61486.2024.10637515. [Online]. Available: https:
//arxiv.org/abs/2405.10131v1.

L. Wilke and G. Scopelliti, “Snpguard: Remote attestation of sev-snp vms us-
ing open source tools,” Proceedings - 9th IEEE European Symposium on Security
and Privacy Workshops, Euro S and PW 2024, pp. 193-198, 2024. por: 10. 1109/
EUROSPW61312.2024.00026.

X. Zhao, “Design and implementation of campus data governance platform based
on big data algorithm,” Proceedings - 2024 Asia-Pacific Conference on Software Engi-
neering, Social Network Analysis and Intelligent Computing, SSAIC 2024, pp. 391-396,
2024. por: 10.1109/8SAIC61213.2024.00080.

Amazon Web Services, Amd sev-snp for amazon ec2 instances, https://docs.aws.
amazon . com/AWSEC2/latest /UserGuide/sev-snp.html, Accessed: 2025-06-22,
2025.

Amazon Web Services. “Aws european sovereign cloud: Standort brandenburg
fiir erste region in deutschland angekiindigt.” Accessed: 2025-06-07. [Online].
Available: https://www.aboutamazon . de/news/amazon - web - services/aws -
european-sovereign-cloud-brandenburg.

Amazon Web Services. “Introducing the aws european sovereign cloud.” Accessed
April 2025. [Online]. Available: https://aws.amazon.com/compliance/europe-
digital-sovereignty/.

151

https://doi.org/10.1109/ICIPS64173.2024.10900147
https://doi.org/10.1109/DSIT61374.2024.10881634
https://doi.org/10.1109/ACCESS.2024.3488032
https://doi.org/10.1109/FMEC62297.2024.10710251
https://doi.org/10.1109/ICCCN61486.2024.10637515
https://arxiv.org/abs/2405.10131v1
https://arxiv.org/abs/2405.10131v1
https://doi.org/10.1109/EUROSPW61312.2024.00026
https://doi.org/10.1109/EUROSPW61312.2024.00026
https://doi.org/10.1109/SSAIC61213.2024.00080
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://www.aboutamazon.de/news/amazon-web-services/aws-european-sovereign-cloud-brandenburg
https://www.aboutamazon.de/news/amazon-web-services/aws-european-sovereign-cloud-brandenburg
https://aws.amazon.com/compliance/europe-digital-sovereignty/
https://aws.amazon.com/compliance/europe-digital-sovereignty/

REFERENCES

[66]

[67]

[73]

[74]

152

R. Baldoni and G. D. Luna, “Sovereignty in the digital era: The quest for continuous
access to dependable technological capabilities,” IEEE Security and Privacy, vol. 23,
pp. 91-96, 1 2025, 1ssN: 15584046. po1: 10.1109/MSEC. 2024 .3500192.

S. Batewela, M. Liyanage, E. Zeydan, M. Ylianttila, and P. Ranaweera, “Security
orchestration in 5g and beyond smart network technologies,” IEEE Open Journal
of the Computer Society, pp. 1-20, 2025, 1ssN: 2644-1268. por: 10.1109/0JCS .
2025 .3563619. [Online]. Available: https://ieeexplore.ieee.org/document /
10974672/.

Bundeswehr, Offizielle website der bundeswehr, https://waw.bundeswehr .de, Zugriff
am 24.06.2025, 2025. [Online]. Available: https://www.bundeswehr .de.

H. Chen, Y. Tang, A. Tsourdos, and W. Guo, “Contextualized autonomous drone
navigation using llms deployed in edge-cloud computing,” 2025 International
Conference on Machine Learning and Autonomous Systems (ICMLAS), pp. 1373-1378,
Mar. 2025. po1: 10.1109/ICMLAS64557.2025.10967934. [Online]. Available: https:
//ieeexplore.ieee.org/document/10967934/.

Confidential Computing Consortium, About the confidential computing consortium,
https://confidentialcomputing.io/about/, Last accessed May 2025, 2025.

D. Khan, S. Aslam, and K. Chang, “Vehicle-to-infrastructure multi-sensor fusion
(v2i-msf) with reinforcement learning framework for enhancing autonomous
vehicle perception,” IEEE Access, 2025, 1ssN: 21693536. por: 10.1109/ACCESS .
2025.3551367.

S. Mhatre, V. J. Dongre, and S. Mande, “Enhancing edge performance: A compar-
ative analysis of Istm inference using hardware acceleration,” 2025 International
Conference on Machine Learning and Autonomous Systems (ICMLAS), pp. 1569-1574,
Mar. 2025. por: 10.1109/ICMLAS64557.2025.10968872. [Online]. Available: https:
//ieeexplore.ieee.org/document/10968872/.

D. Minott and S. S. et. al., “Benchmarking edge ai platforms: Performance analysis
of nvidia jetson and raspberry pi 5 with coral tpu,” SoutheastCon 2025, pp. 1384-
1389, Mar. 2025. po1: 10.1109/SOUTHEASTCONS6624.2025.10971592.

NATO Architecture Capability Team, “Archimate modeling guide for the nato
architecture framework version 4,” NATO Digital Policy Committee, Tech. Rep.,
2025, Official NATO Publication.

C. Nilsson and V. Pfeil, Omniaware pr/faq - strategic concept and platform vision,
PR/FAQ, Capgemini Internal, 2025.

V. Pfeil, Omniaware use case - contextual image verification system (civs), Business
Process Model, Capgemini Internal, 2025.

V. Pteil, Omniaware use case - contextual image verification system (civs) - capabilities
(bpm), Business Process Model, Capgemini Internal, 2025.

V. Pfeil, Omniaware use case - prognostics and health management (phm), Business
Process Model, Capgemini Internal, 2025.

V. Pteil, Omniaware use case - prognostics and health management (phm) - capabilities
(bpm), Business Process Model, Capgemini Internal, 2025.

J. Salvermoser and V. Pfeil, Omniaware use case - reference architecture, Reference
Architecture, Capgemini Internal, 2025.

https://doi.org/10.1109/MSEC.2024.3500192
https://doi.org/10.1109/OJCS.2025.3563619
https://doi.org/10.1109/OJCS.2025.3563619
https://ieeexplore.ieee.org/document/10974672/
https://ieeexplore.ieee.org/document/10974672/
https://www.bundeswehr.de
https://www.bundeswehr.de
https://doi.org/10.1109/ICMLAS64557.2025.10967934
https://ieeexplore.ieee.org/document/10967934/
https://ieeexplore.ieee.org/document/10967934/
https://confidentialcomputing.io/about/
https://doi.org/10.1109/ACCESS.2025.3551367
https://doi.org/10.1109/ACCESS.2025.3551367
https://doi.org/10.1109/ICMLAS64557.2025.10968872
https://ieeexplore.ieee.org/document/10968872/
https://ieeexplore.ieee.org/document/10968872/
https://doi.org/10.1109/SOUTHEASTCON56624.2025.10971592

[81]

[82]

[83]

[84]

REFERENCES

Guidance for trusted secure enclaves on aws. [Online]. Available: https://aws.amazon.
com/solutions/guidance/trusted-secure-enclaves-on-aws/?ncl=h_1s.

Nato - nato architecture framework, version 4. [Online]. Available: https://www.nato.
int/cps/en/natohq/topics_157575.htm.

November 2024 | top500. [Online]. Available: https://top500.0rg/lists/top500/
2024/11/.

What is fog computing? - definition from iotagenda. [Online]. Available: https://www.
techtarget.com/iotagenda/definition/fog-computing-fogging.

153

https://aws.amazon.com/solutions/guidance/trusted-secure-enclaves-on-aws/?nc1=h_ls
https://aws.amazon.com/solutions/guidance/trusted-secure-enclaves-on-aws/?nc1=h_ls
https://www.nato.int/cps/en/natohq/topics_157575.htm
https://www.nato.int/cps/en/natohq/topics_157575.htm
https://top500.org/lists/top500/2024/11/
https://top500.org/lists/top500/2024/11/
https://www.techtarget.com/iotagenda/definition/fog-computing-fogging
https://www.techtarget.com/iotagenda/definition/fog-computing-fogging

APPENDIX - ARCHITECTURE AND DESIGN: NAFV4

MODEL DESCRIPTIONS

Table 1: NSV-4: Capability Dependencies

tion Processing

Awareness Visualisation

Source Target Relation Justification
Type

Cl_Cloud Computing | C10_Vehicle Health An- | serves Provides scalable compute resources for
Platform alytics health analysis microservices.
Cl_Cloud Computing | C16_Tactical Situational | serves Hosts scalable dashboard services for PHM
Platform Awareness tactical visualisation.
Cl_Cloud Computing | C20_Streaming Imagery | serves Enables scalable image pipelines in cloud-
Platform Ingestion native CIVS environments.
Cl_Cloud Computing | C23_Tactical Situational | serves Enables scalable and real-time data render-
Platform Awareness Visualisation ing in visualisation dashboards.
C2_Sensor Data Inges- | C10_Vehicle Health An- | serves Provides raw telemetry data for vehicle con-
tion alytics dition monitoring.
C2_Sensor Data Inges- | C21_Weather Pattern | serves Ingests weather-related data from sensor
tion Recognition streams.
C3_Data C10_Vehicle Health An- | serves Ensures clean, structured input for analysis
Normalisation/Pre- alytics models.
Processing
C3_Data C22_Analyst Feedback | serves Prepares data for effective human-in-the-
Normalisation/Pre- Loop loop refinement.
Processing
C4_Confidential C13_Health-Based Task | serves Protects sensitive health data used for deci-
Computing/Data Prioritisation sion support.
Sovereignty
C4_Confidential C16_Tactical Situational | serves Ensures the secure deployment of dash-
Computing/Data Awareness boards containing classified PHM data.
Sovereignty
C4_Confidential C23_Tactical Situational | serves Ensures secure deployment of dashboards in
Computing/Data Awareness classified ops.
Sovereignty
C5_NATO Classification | C15_Occupancy and | serves Enables compliance with NATO classifica-
Processing Crew State Monitoring tion for sensitive mission data.
C5_NATO Classification | C24_Mission Impact Pre- | serves Enforces policy-compliant processing of sim-
Processing diction ulation outputs.
C12_Sensor Fusion C10_Vehicle Health An- | serves Consolidates sensor signals for accurate

alytics health evaluation.
C10_Vehicle Health An- | C11_Predictive Mainte- | serves Provides historical data for forecasting future
alytics nance failures.
C10_Vehicle Health An- | C14_Tactical Vehicle Sur- | serves Supplies live status for survivability predic-
alytics vivability tion.
C10_Vehicle Health An- | C16_Tactical Situational | serves Provides live vehicle condition data to in-
alytics Awareness form the tactical dashboard.
C15_Occupancy and | C14_Tactical Vehicle Sur- | triggers Passenger /crew metrics trigger recalculation
Crew State Monitoring vivability of survivability under tactical constraints.
C15_Occupancy and | Cl6_Tactical Situational | serves Supplies crew and passenger information to
Crew State Monitoring | Awareness contextualise situational awareness.
C20_Streaming Imagery | C23_Tactical Situational | aggregates | Provides live visual input for dashboard vi-
Ingestion Awareness sualisation.
C20_Streaming Imagery | C24_Mission Impact Pre- | aggregates | Supplies mission-relevant visual data to sim-
Ingestion diction ulations.
C21_Weather Pattern | C23_Tactical Situational | serves Feeds predictive weather insights into the
Recognition Awareness Visualisation tactical decision-making interface.
C21_Weather Pattern | C24_Mission Impact Pre- | serves Injects weather models for simulating envi-
Recognition diction ronmental impact.
C22_Analyst Feedback | C21_Weather Pattern | serves Analyst insights serve as refined input for
Loop Recognition weather model improvement.
C22_NATO Classifica- | C23_Tactical Situational | serves Provides classified object intelligence to sup-

port situational rendering.

155

APPENDIX - ARCHITECTURE AND DESIGN: NAFV4

Table 2: NSOV-3: Service Functions, Shared Core Services

Service Function

Description

SF1_Confidential Data
Ingestion

Encrypted and attested input pipeline for telemetry, imagery and metadata across
use cases. Supports multi-source sensor data via IoT protocols (e.g. MQTT, gRPC).

SF2_Confidential Com-
puting Orchestration

Orchestration layer for workload scheduling across TEEs (Nitro Enclaves, AMD
SEV-SNP), incl. remote attestation and enclave management.

SF3_Secure Storage and
Access Layer

Confidential storage abstraction (e.g. encrypted S3, EBS) with metadata binding
to STANAG 4774/4778 classification policies.

SF4_Multi-Level Secu-
rity API Gateway

Zero-trust compatible API layer supporting multi-domain cross-classification
routing and policy enforcement.

SF5_NATO Classifica-
tion Processing

Core inference pipeline for classification and redaction of mission data, incl. image,
telemetry and logs. Uses containerised Al model service.

SF6_Audit/Provenance
Service

Cryptographically timestamped event logging across workloads (data access,
decisions, model runs), with support for mission forensics.

SF7_Sovereign Policy
Enforcement Engine

Rule-based engine that validates all data and service interactions against national
and NATO policy bindings.

SF8_Federated Identity
Trust Broker

SAML/OpenID-compatible federation hub to mediate identity validation across
national entities and mission domains.

SF9_Metadata Manage-
ment

Distributed metadata management layer to associate mission data with prove-
nance, classification, encryption state and processing policies. Enables data tag-
ging and federation across multi-domain systems.

Table 3: NSOV-3: Service Functions, PHM

Service Function

Description

SF10_Confidential
Telemetry Collection

Real-time encrypted capture of vehicle sensor states (engine, chassis, onboard
diagnostics).

SF11_Health Analytics
Orchestration

Step-based pipeline for scoring and categorising vehicle health anomalies and
degradation trends.

SF12_Fault Detection/-
Root Cause Analysis

Event-driven anomaly analysis on confidential data using edge-deployed models.

SF13_Insider Presence
Monitoring

Detection of seat occupancy and biometric-based driver/passenger identification.

SF14_Vehicle Survivabil-
ity Estimation

Estimation of operational lifespan under tactical constraints, based on real-time
health telemetry.

SF15_Telemetry Prove-
nance Validation

Enforced source integrity verification from data origination point.

SF16_Tactical Health Vi-
sualisation

Overlay of health confidence scores onto mission dashboards for mobile or com-
mand units.

SF17_Tactical Travel

Time Estimator

Estimate of mission-compliant travel duration based on current faults, health
trends and personnel status.

SF18_ Mission Data Clas-
sifier

Classification-aware routing and authorisation logic for telemetry workloads,
triggered by enclave attestation and enforced through policy-bound key release.

SF19_Data Object Stor-
age Governance

Ensures secure, policy-driven object storage with KMS-based encryption, compli-
ance tagging and immutable retention policies for classified mission data in S3.
Triggers downstream processing events based on data lifecycle transitions and
integrity checks.

156

MODEL DESCRIPTIONS

Table 4: NSOV-3: Service Functions, CIVS

Service Function

Description

SF20_Streaming Im-

agery Ingestion

Real-time ingestion pipeline for tactical video feeds and satellite stills.

SF21_Sensor Fusion/S-
patial Correlation

Integration of visual data with geolocation, time and other contextual metadata.

SF22_Weather Pattern | Al-driven classification of weather conditions based on image feeds and public
Recognition datasets (e.g. Copernicus).

SF23_Analyst Feedback | Feedback tagging pipeline to tune model accuracy based on human analyst
Loop inputs.

SF24_Contextual Classi-
fication Refinement

Context-aware classification refinement service using temporal and spatial priors.

SF25_Tactical Image
Overlay Service

Rendering of image overlays for live situational maps and dashboards.

SF26_Mission-Based
Tagging Pipeline

Event-tagging of image segments aligned with mission identifiers and classifica-
tion scope.

SF27_Edge-Compatible
Inference Proxy

Local gateway service optimised for low-bandwidth model execution at the
tactical edge.

Table 5: NSOV-2: Service Interfaces, PHM

Service Interface

Description

SI1_PHM Ingest Gate-

Secure service ingress interface for mission telemetry, enforcing TLS mutual

way authentication and classification tag validation.
SI2_Vault Attestation | Interface for policy-controlled key release from Vault, gated via SPIRE attestation
Key Gate and workload-bound identity tokens.

SI3_Telemetry Classifica-
tion API

Interface for binding telemetry metadata to classification levels and mission
context before further routing.

SI4_Secure Forwarding
Endpoint

Policy-bound forwarding interface for compliant data transfer to internal analytic
pipelines.

Table 6: NSOV-2: Service Interfaces, CIVS

Service Interface

Description

SI20_CIVS Image Ingest
API

Entry interface for streaming tactical imagery and satellite stills, including pre-
ingest validation.

SI21_Classification Over-
lay Service

API for assigning classification overlays (e.g. NATO Restricted) to image seg-
ments.

SI22_Mission Tagging
Interface

Interface for mission-aware tagging of visual data, linking image segments with
classification and operational metadata.

SI23_Secure Analyst
Feedback Channel

Feedback interface enabling analysts to update tagging and classification annota-
tions under audit controls.

157

N =

17

18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

APPENDIX - IMPLEMENTATION: SOURCE CODE AND
DEPLOYMENT ARTEFACTS

DEPLOYMENT - CI/CD-PIPELINE

init_stack.yaml
Defines IAM roles and trust policies to bootstrap StackSet permissions.

AWSTemplateFormatVersion: "2010-09-09"
Description: "This stack contains initial resources e.g. IAM roles, policies, etc.
— that are required in all target accounts of our CI/CD solution."
Parameters:
Application:
Type: "String"
Default: "OmniAware"
Description: "Name of the application the resources belong to"
Stage:
Type: "String"
Default: "dev"
Description: "The stage. E.g. 'dev' or 'prod'"
Prefix:
Type: "String"
Default: "omniaware"
Description: "A prefix used for resource naming. E.g. S3 Bucket prefix."
The following parameters are used to specify the source account and role that will
— assume this role.
Please use with caution and ensure that the source account and role are correctly
— set.
SourceAccountId:
Type: "String"
NoEcho: true
Description: "The AWS account ID of the account assuming this role."
SourceAccountCodeBuildRoleName:
Type: "String"
Description: "The name of the role in the source account used by CodeBuild."
StackSetsAdminRoleNameSuffix:
Type: "String"
Default: "CustomStackSetsAdminRole"
Description: "The name of the role in the source account (without
— application-stage prefix) that will assume this role."

Mappings:
IAM:
Roles:
PermissionsBoundaryPolicy: "GroupIT_SecurityGroupPermissionBoundary"

Resources:
CrossAccountCloudFormationStackSetsRole:
Type: "AWS::IAM::Role"
Properties:
RoleName: !Sub "${Application}-CustomStackSetsExecutionRole"
Path: "/"
PermissionsBoundary: !Join
nn
- - !Sub "arn:aws:iam::${AWS: :AccountId}:policy/"
- !FindInMap [IAM, Roles, PermissionsBoundaryPolicy]
AssumeRolePolicyDocument:
Version: "2012-10-17"

159

47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Statement:
- Effect: "Allow"
Principal:
AWS: !Sub ”arn:aws:iam::${SourceAccountId}:role/${Application}—${StackSeJ
< tsAdminRoleNameSuffix}"
Action: "sts:AssumeRole"
CloudFormationDeploymentPolicy:
Type: "AWS::IAM::Policy"

Properties:

PolicyName: !Sub "${Application}-CustomStackSetsExecutionRolePolicy"
Roles:

- !'Ref CrossAccountCloudFormationStackSetsRole
PolicyDocument:

Version: "2012-10-17"

Statement:

- Effect: "Allow"
Action:

- "cloudformation:CreateStack"
- "cloudformation:UpdateStack"
- "cloudformation:DeleteStack"
- "cloudformation:DescribeStackResources"
- "cloudformation:DescribeStacks"
- "cloudformation:ListStackResources"
- "cloudformation:DescribeStackResource"
- "cloudformation:ListStacks"
- "cloudformation:DescribeChangeSet"
- "cloudformation:DescribeStackSet"
- "cloudformation:GetTemplateSummary"
- "cloudformation:CreateChangeSet"
- "cloudformation:ExecuteChangeSet"
Resource: !Sub "arn:aws:cloudformation:${AWS::Region}:${AWS: :AccountId}:*"
CrossAccountCloudFormationStackRole:
Type: "AWS::IAM::Role"
Properties:
RoleName: !Sub "${Application}-CrossAccountStacksRole"
Path: "/"
PermissionsBoundary: !Join
nn
- - !'Sub "arn:aws:iam::${AWS::AccountId}:policy/"
- !FindInMap [IAM, Roles, PermissionsBoundaryPolicy]
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Principal:
AWS: !Sub ”arn:aws:iam::${SourceAccountId}:role/${App1ication}—${SourceAJ
< ccountCodeBuildRoleName}"
Action: "sts:AssumeRole"
CrossAccountCloudFormationStackRolePolicy:
Type: "AWS::IAM::Policy"

Properties:

PolicyName: !Sub "${Application}-CrossAccountStacks-Policy"
Roles:

- !'Ref CrossAccountCloudFormationStackRole
PolicyDocument:

Version: "2012-10-17"

Statement:

- Effect: "Allow"
Action:

- "cloudformation:CreateStack"

- "cloudformation:UpdateStack"

160

106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

DEPLOYMENT - CI/CD-PIPELINE

- "cloudformation:DeleteStack"

- "cloudformation:DescribeStackResources"
- "cloudformation:DescribeStacks"

- "cloudformation:ListStackResources"

- "cloudformation:DescribeStackResource"
- "cloudformation:ListStacks"

- "cloudformation:DescribeChangeSet"

- "cloudformation:GetTemplateSummary"

- "cloudformation:CreateChangeSet"

- "cloudformation:ExecuteChangeSet"

Resource: !Sub "arn:aws:cloudformation:${AWS::Region}:${AWS::AccountId}:*"

This policy allows the role to create and manage resources.

After an initial development phase, this policy should be limited to only the

— resources that are needed.
CrossAccountResourceProvisioningPolicy:
Type: "AWS::IAM::Policy"
Properties:

PolicyName: !Sub "${Application}-CrossAccountResourceProvisioning-Policy"

Roles:
- !Ref CrossAccountCloudFormationStackRole
- !Ref CrossAccountCloudFormationStackSetsRole
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:
- "kms:CancelKeyDeletion"
- "kms:CreateAlias"
- "kms:CreateKey"
- "kms:Decrypt"
- "kms:DeleteAlias"
- "kms:DescribeKey"
- "kms:DisableKeyRotation"
- "kms:EnableKeyRotation"
- "kms:Encrypt"
- "kms:GenerateDataKey*"
- "kms:GetKeyPolicy"
- "kms:ListAliases"
- "kms:ListKeys"
- "kms:ListResourceTags"
- "kms:PutKeyPolicy"
- "kms:ReEncrypt*"
- "kms:ScheduleKeyDeletion"
- "kms:TagResource"
- "kms:UntagResource"
- "kms:UpdateAlias"

Resource: !Sub "arn:aws:kms:${AWS::Region}:${AWS::AccountId}:

- Effect: "Allow"
Action:

- "s3:CreateBucket"
- "s3:DeleteBucket"
- "s3:DeleteObject"
- "s3:GetBucketPolicy"
- "s3:GetBucketTagging"
- "s3:GetEncryptionConfiguration"
- "s3:GetObject"
- "s3:ListAl1MyBuckets"
- "s3:ListBucket"
- "s3:PutBucketPolicy"
- "s3:PutBucketTagging"
- "s3:PutEncryptionConfiguration"

*"

161

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

- "s3:PutObject"

Resource: "arn:aws:s3:::*"

- Effect: "Allow"

Action:
- "logs:
- "logs:
- "logs:
- "logs:
- "logs:
- "logs:
- "logs:
- "logs:
- "logs:
- "logs:

CreateLogGroup"
CreateLogStream"
DeleteLogGroup"
DeletelLogStream"
DescribeLogGroups"
DescribelogStreams"
PutLogEvents"
PutRetentionPolicy"
TagLogGroup"
UntagLogGroup"

Resource:
- Effect:
Action:

!Sub "arn:aws:logs:${AWS::Region}: ${AWS: :AccountId}:log-group:*"

"Allow"

"lambda:
"lambda:
"lambda:
"lambda:
"lambda:
"lambda:
"lambda:

CreateAlias"
CreateFunction"
DeleteAlias"
DeleteFunction"
GetFunction"
ListFunctions"
TagResource"

- "lambda:UntagResource"

- "lambda:UpdateAlias"

- "lambda:UpdateFunctionCode"

- "lambda:UpdateFunctionConfiguration"
Resource: !Sub "arn:aws:lambda:${AWS::Region}:${AWS: :AccountId}:function:*"

- Effect: "Allow"

Action:

- "iam:AttachRolePolicy"

- "iam:CreatePolicy"

- "iam:CreateRole"

- "iam:DeletePolicy"

- "iam:DeleteRole"

- "iam:DeleteRolePolicy"

- "iam:DetachRolePolicy"

- "iam:GetPolicy"

- "iam:GetRole"

- "iam:GetRolePolicy"

- "iam:ListAttachedRolePolicies"

- "iam:ListRolePolicies"

- "iam:PassRole"

- "iam:PutRolePolicy"

- "iam:TagRole"

- "iam:UntagRole"

- "iam:UpdateRole"

Resource: !Sub "arn:aws:iam::${AWS::AccountId}:*"
- Effect: "Allow"
Action:

- "ec2:AuthorizeSecurityGroupEgress"

- "ec2:CreateNetworkInterface"

- "ec2:CreateNetworkInterfacePermission"
- "ec2:CreateSecurityGroup"

- "ec2:DeleteNetworkInterface"

- "ec2:DeleteSecurityGroup"

- "ec2:DescribeNetworkInterfaces"

- "ec2:DescribeSecurityGroups"

- "ec2:RevokeSecurityGroupEgress"

Resource: "x"

162

227
228
229
230
231
232
233
234
235
236
237

238
239
240
241
242
243
244
245
246
247
248
249

O 0 N N Ul W N

N e
= W N = O

DEPLOYMENT - CI/CD-PIPELINE

- Effect: "Allow"

Action:
- "secretsmanager:CreateSecret"
- "secretsmanager:DeleteSecret"
- "secretsmanager:DescribeSecret"
- "secretsmanager:GetSecretValue"
- "secretsmanager:ListSecrets"
- "secretsmanager:PutSecretValue"
- "secretsmanager:TagResource"
- "secretsmanager:UntagResource"

Resource: !Sub

— "arn:aws:secretsmanager:${AWS::Region}:${AWS: :AccountId}:secret:*"

Outputs:
CrossAccountCloudFormationStackRoleArn:
Description: "The ARN of the cross-account CloudFormation stack role"
Value: !GetAtt CrossAccountCloudFormationStackRole.Arn
Export:
Name: !Sub 'CrossAccountCloudFormationStackRoleArn'
CrossAccountCloudFormationStackSetsRoleArn:
Description: "The ARN of the cross-account CloudFormation stack sets role"
Value: !GetAtt CrossAccountCloudFormationStackSetsRole.Arn
Export:
Name: !Sub 'CrossAccountCloudFormationStackSetsRoleArn'

1

parameters. json
Provides parameter defaults for the modular deployment structure.

[
{
"ParameterKey": "SourceAccountId",
"ParameterValue": "<SourceAccountId>"
1,
{
"ParameterKey": "SourceAccountCodeBuildRoleName",
"ParameterValue": "CodeBuildRole"
1,
{
"ParameterKey": "StackSetsAdminRoleName",
"ParameterValue": "CustomStackSetsAdminRole"
}
]
23

The implementation of this module was based on code contributions by colleagues in the OmniAware
project and has been integrated with their explicit permission.

The implementation of this module was based on code contributions by colleagues in the OmniAware
project and has been integrated with their explicit permission.

Certain elements in the code listing have been anonymised or generalised to preserve confidentiality and
align with disclosure requirements.

163

= W N =

N O

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

deploy_stacks_wrapper.sh
Wrapper script to trigger ordered execution of infrastructure scripts.

#!/bin/bash

This script is a wrapper script for ./deploy_stacks.sh.
It takes a comma separated list of account names as argument and then calls
— ./deploy_stacks.sh for each account name.

#iitdd IMPORTANT ####t##t#

It is only meant to be used in the CI/CD pipeline and and only executed in the

— context of the “ingest”™ account.

If the currently scoped account is not the same as the target account, only the IAM
— role of the CI/CD solution of the “ingest™ account

can assume a respective role in the target account.

set -eEuo pipefail

usage() {
cat <<EQOF
Usage: $0
Options:
--account-names, -a '"<account_name>,<account_name>,....,<account_name>": The names of
< the accounts to deploy to seperated by comma.
EQF
I}
validate_inputs() {
[[-n "$account_names"]] || { echo "Account names are required."; usage; exit 1; }
[["$account_names" =~ ~([a-z]+) (, [a-z]+)*$ 1] \
Il { echo "Invalid account names format. Only lowercase words separated by commas
< are allowed."; exit 1; }

The account names can be provied as environment variable or as command line argument.
account_names="${ACCOUNT_NAMES:-}"

while [[$# -gt 0 11; do
case "$1" in
-al--account-names)
echo "Account names provided: $2"
[[-z "$2" 1] && { echo "Missing argument for $1"; usage; exit 1; }
account_names="$2"
shift 2
-h|--help)
usage
exit O
*)
echo "Unknown option: $1"
usage
exit 1
esac
done

validate_inputs
while read -r account; do

echo "Executing deployment script for: ${accountl}"
./deploy_stacks.sh -a "${account}"

164

55

B W N =

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

38
39

40

41
42
43
44
45
46

DEPLOYMENT - CI/CD-PIPELINE

done < <(tr ',' '\n' <<< ${account_names})

4

deploy_stack-sets.sh
Main deployment script for applying stack definitions to all scoped accounts.

#!/bin/bash

This script deploys the StackSets for the OmniAware project.
It assumes that the AWS CLI is configured and that the user has the necessary
< permissions.

set -eEuo pipefail

usage () {
cat <<EQOF

Usage: $0

Options:
--account-names, -a <account_names>: Comma-separated list of account names to deploy
— the StackSets to.

EOF

}

get_stack_set_operation_status() {
local stack_set_name="$1"
local operation_id="$2"
aws cloudformation describe-stack-set-operation \
--stack-set-name "$stack_set_name" \
--operation-id "$operation_id" \
--query 'StackSetOperation.Status' --output text

target_accounts="${TARGET_ACCOUNTS:-}"
region="${AWS_DEFAULT_REGION:-eu-central-1}"
application="${APPLICATION: -OmniAwarel}"
stage="${STAGE: -dev}"

readonly accounts_config="accounts. json"
[[-f "$accounts_config" 1] || { echo "File $accounts_config not found"; exit 1; }
g g

Custom admin and execution role names for stack-sets

These roles are used to manage stack-sets and stack-instances across accounts.

The default names are based on the current implementation.

The admin role must exist in the current account and the execution role must exist in
— the target accounts.
stack_sets_admin_ro1e_name_defau1t="$app1ication—$stage—CloufFormationStackSets—CustomJ
— -Admin-Role"
stack_sets_execution_role_name_default="$application-$stage-CrossAccountStackSets-Role"
stack_sets_admin_role_name=”${STACK_SETS_ADMIN_ROLE_NAME:—$stack_sets_admin_role_name_J
— default}"
stack_sets_execution_role_name=”${STACK_SETS_EXECUTION_ROLE_NAME:—$stack_sets_executi0J

< n_role_name_default}"

while [[$# -gt 0 11; do
case "$1" in
-al--account-names)
echo "Account names provided: $2"
[[-z "$2" 1] && { echo "Missing argument for $1"; usage; exit 1; }

4 The implementation of this module was based on code contributions by colleagues in the OmniAware

project and has been integrated with their explicit permission.

165

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75

76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

target_accounts="$2"
shift 2

-h|--help)
usage
exit 0

*)
echo "Unknown option: $1"
usage
exit 1

esac
done

[[-n "$target_accounts"]] || { echo "Target accounts are required."; usage; exit 1; }
[["$target_accounts" =" ~([a-z]+) (,[a-z]+)*$ 1] \
Il { echo "Invalid target accounts format. Only lowercase words separated by commas
— are allowed."; exit 1; }

echo "Get current account ID"
current_account_id="$(aws sts get-caller-identity --query Account --output text)"

echo "###### Creating and updating stack-sets ######"
readonly stack_sets="$(aws cloudformation list-stack-sets --status 'ACTIVE' --query
— 'Summaries[].StackSetName' --output text)"
echo "Existing stack-sets: $stack_sets"
while read -r template; do
echo "Found template: $template"
file_name="$(basename "$template" .yaml)"
stack_set_name_in_file_name="$(sed 's/~[0-9]*_//g' <<< "$file_name" | tr '[:lower:]’
— '[:upper:1"')"
stack_set_name="${application}-${stack_set_name_in_file_name}-StackSet"
Check if stack-set already exists
if [[! "$stack_sets" =~ "$stack_set_name"]]; then
echo "Creating stack-set: $stack_set_name with template: $template"
aws cloudformation create-stack-set \
--stack-set-name "${stack_set_namel}" \
--template-body "file://$template" \
--capabilities CAPABILITY_NAMED_IAM \
--administration-role-arn
— "arn:aws:iam::${current_account_id}:role/${stack_sets_admin_role_name}" \
——execution-role-name "$stack_sets_execution_role_name" \
--permission-model "SELF_MANAGED" > /dev/null
else
echo "Stack-set: $stack_set_name already exists. Skipping creation."
fi

Create stack-instances for scoped accounts only
scoped_accounts="$(jq -r '[.[] | select(.deploy_stack_set_instances == true) |
< .account_id] | join(" ")' $accounts_config)"
echo "Creating stack-instance for target accounts: $scoped_accounts"
operation_id="$(aws cloudformation create-stack-instances \
--stack-set-name "${stack_set_namel}" \
--regions "${region}" \
--accounts $scoped_accounts \
--operation-preferences "{\"FailureToleranceCount\":3,\"MaxConcurrentCount\":5}" \
| jq -r '.OperationId')"

stack_set_operation_status="$(get_stack_set_operation_status "$stack_set_name"

— "$operation_id")"

166

102
103
104
105

106
107

108
109
110
111
112
113
114

115
116
117
118
119
120
121
122
123

124
125
126
127
128

DEPLOYMENT - CI/CD-PIPELINE

Wait for stack-instances creation to complete

while [[! $stack_set_operation_status =~ ~(SUCCEEDED|FAILED|STOPPED)$ 1]; do
echo "StackSet operation status: ${stack_set_operation_status}. Waiting for
— stack-instances creation to complete..."
sleep 5
stack_set_operation_status="$(get_stack_set_operation_status "$stack_set_name"
— "$operation_id")"

done

if [["$stack_set_operation_status" == "FAILED"]]; then
echo "Stack-instances creation for stack-set $stack_set_name failed. Exiting."
exit 1

else

echo "Stack-instances creation for stack-set $stack_set_name completed with status
— $stack_set_operation_status."
fi

Update stack-set
echo "Updating stack-set $stack_set_name with template: $template"
aws cloudformation update-stack-set \
--stack-set-name "${stack_set_namel}" \
--template-body "file://$template" \
--capabilities CAPABILITY_NAMED_IAM \
--administration-role-arn
< M"arn:aws:iam: :${current_account_id}:role/${stack_sets_admin_role_name}" \
--execution-role-name "$stack_sets_execution_role_name" \
--permission-model "SELF_MANAGED" > /dev/null
echo "Updating stack-set $stack_set_name completed."

done < <(find './shared/stacksets' -name '*.yaml')

The implementation of this module was based on code contributions by colleagues in the OmniAware
project and has been integrated with their explicit permission.

167

O 0 N N U N =

e
LW N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35

36
37

38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

deploy_stacks-eu-west-1.sh
Region-specific deployment variant for ‘eu-west-1".

A

Project: OmniAware - Next-Gen Defence Platform

Component : Regional Deployment Script for CI/CD Stacks

Script Name: deploy_stacks-eu-west-1.sh

Description: Deploys all CloudFormation stacks in the specified directory
for a given AWS account and template, assuming cross-account
roles and supporting dynamic parameter overrides.

Author: Valentin Pfeil

Institution: University of the Bundeswehr Munich (M.Sc. Computer Science)

Supervision: Prof. Dr. Wolfgang Hommel / Dr. Karl Fuerlinger

Date: 2025-06-21

License: Research Use Only / Academic Distribution, Subject to Future
Publication

Format: Shell Script (Bash)

Tags: AWS CLI, CI/CD, CloudFormation, DevSecOps, Deployment Script

Notes:

- Designed for deployments targeting AWS region eu-west-1 (Ireland)
- Supports dynamic template selection and parameter injection

- Includes role assumption logic for cross-account stack operations
- Integrates with AWS STS and jq for secure session token management

Documentation:
- Master Thesis Appendix: CI/CD Pipeline Deployment Scripts
R

############i H O H OH OB O O OB O H R

set -eEuo pipefail

usage() {
cat <<EQOF

Usage: $0

Options:
--account-name, -a <account_name>: The name of the account to deploy the stack or
— stacks to.
--template, -t <template_file_path>: The relative path to a specific CloudFormation
— template file to deploy.

NOTE: If no template is specified, all templates in the account's stacks directory
— will be deployed.

EOF

Iy

validate_inputs() {
[[-n "$account_name"]] || { echo "Account name is required."; usage; exit 1; }

I;

get_account_data() {
local account_name="$1"
local accounts_file="accounts.json"
[[-f "$accounts_file"]] || { echo "File $accounts_file not found"; exit 1; }
jq -c¢ ".[] | select(.name == \"$account_name\")" accounts.json

I;

assume_role() {
local account_id="$1"
local role_name="$2"

168

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

DEPLOYMENT - CI/CD-PIPELINE

local session_name="$3"

echo "Assuming role $role_name in account $account_id"
target_role_arn="arn:aws:iam::$account_id:role/$role_name"
session_credentials="$(aws sts assume-role \

--role-arn "$target_role_arn" \

--role-session-name "$session_name" \

--query 'Credentials.[AccessKeyId,SecretAccessKey,SessionToken]' \

--output json)"
export AWS_ACCESS_KEY_ID="$(jq -r '.[0]' <<< "$session_credentials")"
export AWS_SECRET_ACCESS_KEY="$(jq -r '.[1]' <<< "$session_credentials")"
export AWS_SESSION_TOKEN="$(jq -r '.[2]' <<< "$session_credentials")"
echo "Assumed role $role_name in account $account_id"

deploy() {
local template="$1"

file_name="$(basename "$template" .yaml)"
path="$(dirname "$template")"
stack_name_from_file="$(sed 's/~[0-9]*_//g' <<< "$file_name" | tr '[:lower:]'
— '[:upper:]' | tr '_' '-")"
stack_name="${application}-${stack_name_from_file}-Stack"
echo "Deploying stack: $stack_name with template: $template"
aws cloudformation deploy \

--region "$region" \

--template-file "$template" \

--stack-name "${stack_name}" \

--parameter-overrides "file://$path/parameters.json" \

--capabilities CAPABILITY_NAMED_IAM;

Variables and defaults

#0LD: region="${AWS_DEFAULT_REGION:-eu-central-1}"
region="${AWS_DEFAULT_REGION:-eu-west-1}"

application="${APPLICATION: -OmniAware}"

stage="${STAGE:-dev}"

account_name="${ACCOUNT_NAME: -}"

template_file_path="${TEMPLATE_FILE_PATH:-}"
cross_account_role="${CROSS_ACCOUNT_ROLE: - ${application}-CrossAccountStacksRole}"

while [[$# -gt 0 11; do
case "$1" in

-al--account-name)
echo "Account name: $2"
[[-z "$2" 11 && { echo "Missing argument for $1"; usage; exit 1; }
account_name="$2"
shift 2

-t|--template)
echo "Template name: $2"
[[-z "$2" 11 && { echo "Missing argument for $1"; usage; exit 1; }
[[-£ "$2" J]1 || { echo "Template file $2 not found"; exit 1; }
template_file_path="$2"
shift 2

-h|--help)
usage
exit 0

]

169

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

115 *)

116 echo "Unknown option: $1"

117 usage

118 exit 1

119 -

120 esac

121 done

122

123 |account_data="$(get_account_data "$account_name")"

124 [[-z "$account_data"]] && { echo "Account with name $account_name not found in

< accounts.json"; exit 1; }
125
126 |account_id="$(jq -r
127 current_account_id="$(aws sts get-caller-identity --query Account --output text)"
128
129 # Assume role in the target account if the account ID does not match the current
— account ID

'.account_id' <<< "$account_data'")"

130 if [[! "$account_id" =~ "$current_account_id"]]; then

131 echo "Account ID $account_id does not match current account ID $current_account_id.
— Assuming role in target account."

132 assume_role "$account_id" "$cross_account_role" "$account_name"

133 else

134 echo "Account ID $account_id matches current account ID $current_account_id. No role
— assumption needed."

135 fi

136

137 |if [[-n "$template_file_path"]1]; then

138 echo "###### Deploying specific template: $template_file_path ####t##"

139 deploy "$template_file_path"

140 echo "###### Deployment of specific template completed ######"

141 exit O

142 fi

143

144 | echo "###### Deploying stacks to account $account_name ($account_id) ######"

145 while read -r template; do

146 deploy "$template"

147 |done < <(find ./${account_name}/stacks -type f -name "*.yaml" | sort)

148 | echo "###### Deploying stacks to account $account_name ($account_id) completed ######"

6 The implementation of this module was based on code contributions by colleagues in the OmniAware
project and has been integrated with their explicit permission.

170

O 0 N N Ul W N =

Q1 UT U1 01 U1 U1 U1 s s s B B R R R R s G 0 W W D W W W W NNNNRNNNRNRNRN S B S s e e s el s
SO RN =S TSRO ES OISO EODRNARES O RXRIRNAT R DN, SO IR ®N0 R~ O

CORE INFRASTRUCTURE

00_kmsKeys.yaml

CORE INFRASTRUCTURE

Defines the KMS key and alias for encrypted telemetry and data plane usage.

AWSTemplateFormatVersion: "2010-09-09"

Parameters:
Application:
Type: "String"
Default: "OmniAware"

Stage:

Type: "String"

Default: "dev"

Description: "The stage. E.g. 'dev' or 'prod'"
Prefix:

Type: "String"

Default: "omniaware"

Region:
Type: "String"
Default: "eu-central-1"
Description: "The region."
AuditAccountId:
Type: "String"

SecurityAccountId:
Type: "String"

IngestAccountId:
Type: "String"

DatalakeAccountId:
Type: "String"

ConsumerAccountId:
Type: "String"

Resources:
AuditS3BucketKMSKey:
Type: "AWS::KMS::Key"
Properties:
Description: "KMS key for encrypting audit logs"
KeyPolicy:
Id: AuditS3BucketKMSKeyPolicy
Version: "2012-10-17"
Statement:
- Sid: AllowRootAccess
Effect: Allow
Principal:

Action: kms:*
Resource: '"x"
- Sid: Allow CloudTrail to encrypt logs
Effect: Allow
Principal:
Service: cloudtrail.amazonaws.com
Action: kms:GenerateDataKey*

Description: "AWS Account ID of the central audit account"

Description: "AWS Account ID of the central audit account"

AWS: !Sub "arn:aws:iam::${AWS::AccountId}:root"

Description: "A stack for KMS keys used in other accounts of the Organization"

Description: "Name of the application the resources belong to"

Description: "A prefix used for resource naming. E.g. S3 Bucket prefix."

Description: "AWS Account ID of the central ingest account"

Description: "AWS Account ID of the central ingest account"

Description: "AWS Account ID of the central ingest account"

171

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

57 Resource: '"x"

58 Condition:

59 StringEquals:

60 "aws:SourceAccount":

61 - 'Ref AWS::AccountId

62 - !'Ref AuditAccountId

63 - !'Ref SecurityAccountId

64 - !'Ref IngestAccountId

65 - !Ref DatalakeAccountId

66 - !'Ref ConsumerAccountId

67 - Sid: Allow CloudTrail to describe key

68 Effect: Allow

69 Principal:

70 Service: cloudtrail.amazonaws.com

71 Action: kms:DescribeKey*

72 Resource: "x"

73 Condition:

74 StringEquals:

75 "aws:SourceAccount":

76 - 'Ref AWS::AccountId

77 - !'Ref AuditAccountId

78 - !'Ref SecurityAccountlId

79 - !'Ref IngestAccountId

80 - !'Ref DatalakeAccountId

81 - !'Ref ConsumerAccountId

82 - Sid: Allow cross-account log decryption

83 Effect: Allow

84 Principal:

85 AWS:

86 - !Sub "arn:aws:iam::${AWS: :AccountId}:root"
87 - !Sub "arn:aws:iam::${AuditAccountId}:root"
88 - !Sub "arn:aws:iam::${SecurityAccountId}:root"
89 - !Sub "arn:aws:iam::${IngestAccountId}:root"
90 - !Sub "arn:aws:iam::${DatalakeAccountId}:root"
91 - !Sub "arn:aws:iam::${ConsumerAccountId}:root"
92 Action:

93 - kms:Decrypt

94 - kms:ReEncryptFrom

95 Resource: "x"

96 Tags:

97 - Key: "Stack"

98 Value: !Ref AWS::StackName

99 - Key: "Application"

100 Value: !Ref Application

101 - Key: "Stage"

102 Value: !Ref Stage

103 AccesslogsS3BucketKMSKey:

104 Type: "AWS::KMS::Key"

105 Properties:

106 Description: "KMS key for encrypting access logs"

107 KeyPolicy:

108 Id: AccessS3BucketKMSKeyPolicy

109 Version: "2012-10-17"

110 Statement:

111 - Sid: AllowRootAccess

112 Effect: Allow

113 Principal:

114 AWS: !Sub "arn:aws:iam::${AWS::AccountId}:root"
115 Action: kms:*

116 Resource: '"x"

117 - Sid: Allow S3 to encrypt logs

172

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

CORE INFRASTRUCTURE

Effect: Allow
Principal:
Service: s3.amazonaws.com
Action: kms:GenerateDataKey*
Resource: "x"
Condition:
StringEquals:
"aws:SourceAccount":
- 'Ref AWS::Accountld
- !'Ref AuditAccountId
- !'Ref SecurityAccountId
- !Ref IngestAccountId
- !Ref DatalakeAccountId
- 'Ref ConsumerAccountId
- Sid: Allow S3 to describe key
Effect: Allow
Principal:
Service: s3.amazonaws.com
Action: kms:DescribeKey*
Resource: "x"
Condition:
StringEquals:
"aws:SourceAccount":
- 'Ref AWS::AccountId
- !'Ref AuditAccountId
- !'Ref SecurityAccountId
- !'Ref IngestAccountId
- !Ref DatalakeAccountId
- 'Ref ConsumerAccountId
- Sid: Allow cross-account log decryption
Effect: Allow
Principal:
AWS:
- !Sub "arn:aws:iam: :${AWS::AccountId}:root"
- !Sub "arn:aws:iam::${AuditAccountId}:root"
- !Sub "arn:aws:iam::${SecurityAccountId}:root"
- !Sub "arn:aws:iam::${IngestAccountId}:root"
- !Sub "arn:aws:iam::${DatalakeAccountId}:root"
- !Sub "arn:aws:iam: :${ConsumerAccountId}:root"
Action:
- kms:Decrypt
- kms:ReEncryptFrom
Resource: "x"
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Outputs:

AuditS3BucketKMSKey:
Description: ARN of the KMS key to encrypt S3 audit logs
Value: !GetAtt AuditS3BucketKMSKey.Arn
Export:

Name: "AuditS3BucketKMSKey"

AccesslogsS3BucketKMSKey:
Description: ARN of the KMS key to encrypt S3 access logs
Value: !GetAtt AccesslogsS3BucketKMSKey.Arn
Export:

173

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

179 Name: "AccesslogsS3BucketKMSKey"

00_kms_ingest.yaml
KMS key definition for ingest-related encryption scopes.

1 AWSTemplateFormatVersion: "2010-09-09"
2 Description: "A stack for KMS keys used in Ingest account"
3
4 Parameters:
5 Application:
6 Type: "String"
7 Default: "OmniAware"
8 Description: "Name of the application the resources belong to"
9 Stage:
10 Type: "String"
11 Default: "dev"
12 Description: "The stage. E.g. 'dev' or 'prod'"
13 Prefix:
14 Type: "String"
15 Default: "omniaware"
16 Description: "A prefix used for resource naming. E.g. S3 Bucket prefix."
17 Region:
18 Type: "String"
19 Default: "eu-central-1"
20 Description: "The region."
21 KeyManagementIamRoleName:
22 Type: "String"
23 Description: "The IAM role name that will be allowed to manage the KMS key"
24 IngestAccountId:
25 Type: "String"
26 Description: "AWS Account ID of the central ingest account"
27 IngestAccountAdminRoleName:
28 Type: "String"
29 Description: "The name of the admin role in the ingest account"
30
31 Resources:
32 FirehoseDeliveryStreamKmsKey:
33 Type: "AWS::KMS::Key"
34 Properties:
35 Description: "KMS key for delivery streams in the Ingest account"
36 Enabled: true
37 EnableKeyRotation: true
38 KeySpec: "SYMMETRIC_DEFAULT"
39 KeyUsage: "ENCRYPT_DECRYPT"
40 MultiRegion: false
41 PendingWindowInDays: 30
42 # Overwriting default policy
43 KeyPolicy:
44 Version: "2012-10-17"
45 Statement:
46 # Default Statement. TODO: MUST be restricted. Details to be clarified.
47 - Sid: "Enable IAM User Permissions"
48 Effect: "Allow"
49 Principal:
50 AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"

7 The implementation of this module was based on code contributions by colleagues in the OmniAware
project and has been integrated with their explicit permission.

174

51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91

92

93
94
95
96
97
98
99
100
101
102
103
104
105
106

CORE INFRASTRUCTURE

Action: "kms:*"
Resource: "*"
- Sid: "Allow Create Grant From Ingest Account"
Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${IngestAccountId}:role/${IngestAccountAdminRoleName}"
Action: "kms:CreateGrant"
Resource: "x"

Condition:
StringEquals:
"kms:ViaService": !Sub "firehose.${Region}.amazonaws.com"
"kms:CallerAccount": !Ref IngestAccountId
Bool:

"kms : GrantIsForAWSResource": true
FirehoseDeliveryStreamKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:
AliasName: !Sub "alias/${Prefix}/ingest/firehose"
TargetKeyId: !Ref FirehoseDeliveryStreamKmsKey

CloudwatchLogsKmsKey:
Type: "AWS::KMS::Key"
Properties:

Description: "KMS key for telemetry data logs in the Ingest account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
Action: "kms:*"
Resource: "x"
Ref: https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt—log—J

— data-kms.html#cmk-permissions
- Sid: "Allow Key usage for CloudWatch log groups and streams related to
— Telemetrydata ingestion in the Ingest account"
Effect: "Allow"
Principal:
Service: !Sub "logs.${AWS::Region}.amazonaws.com"
Action:
- "kms:Encrypt"
- "kms:Decrypt"
- "kms:ReEncrypt*"
- "kms:GenerateDataKey*"
- "kms:Describe*"
Resource: "x"
Condition:
Arnlike:
"kms :EncryptionContext:aws:logs:arn":
- !Sub "arn:aws:logs:${Region}:${IngestAccountId}:log—group:/${App1iJ

— cation}/TelemetryData/*"

175

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

- !Sub "arn:aws:logs:${Region}:${IngestAccountId}:log-group:/${Appli
— cation}/ImageData/*"
CloudwatchLogsKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:
AliasName: !Sub "alias/${Prefix}/ingest/logs"
TargetKeyId: !Ref CloudwatchLogsKmsKey
LambdaKmsKey:
Type: "AWS::KMS: :Key"
Properties:
Description: "KMS key for all Lambda functions in the Ingest account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
Action: "kms:*"
Resource: "*"
- Sid: "Allow function usage"
Effect: "Allow"

Principal:

AWS: !Sub "arn:aws:iam::${IngestAccountId}:root"
Action:

- "kms:Decrypt"

- "kms:DescribeKey"
- "kms:GenerateDataKey"
Resource: "*"
Condition:
StringEquals:
"aws:SourceAccount": !Ref IngestAccountId
ArnLike:
"aws:SourceArn": !Sub
— "arn:aws:lambda:${Region}:${IngestAccountId}:function:*"
- Sid: "Allow Ingest account admin to create grant"
Effect: "Allow"
Principal:
AWS: !Sub
< "arn:aws:iam::${IngestAccountId}:role/${IngestAccountAdminRoleName}"
Action:
- "kms:CreateGrant"
Resource: "*"

Condition:
StringEquals:
"kms:ViaService": !Sub "lambda.${Region}.amazonaws.com"
"kms:CallerAccount": !Ref IngestAccountId
Bool:

"kms :GrantIsForAWSResource': true
- Sid: "Allow Ingest account admin to encrypt Lambda environment variables"
Effect: "Allow"
Principal:

176

164

165
166
167
168
169
170
171
172
173
174
175
176
177

O 0 N Uk W N

WOW W W W W W WRNNNNRNRNNRNIRNIRNRS 2 2o e e el
AT R ORNPE SO PRI R DN, S DO IO @R~ O

CORE INFRASTRUCTURE

AWS: !Sub
— "arn:aws:iam::${IngestAccountId}:role/${IngestAccountAdminRoleName}"
Action:

- "kms:Encrypt"
- "kms:ReEncryptx*"
Resource: "x"

Condition:
StringEquals:
"kms:ViaService": !Sub "lambda.${Region}.amazonaws.com"
"kms:CallerAccount": !Ref IngestAccountId
LambdaKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:

AliasName: !Sub "alias/${Prefix}/ingest/lambda"
TargetKeyId: !Ref LambdaKmsKey

00_kms_datalake.yaml
Defines storage-layer KMS key for long-term encrypted data at rest.

AWSTemplateFormatVersion: "2010-09-09"
Description: "A stack for KMS keys used in Datalake account"

Parameters:

Application:

Type: "String"

Default: "OmniAware"

Description: "Name of the application the resources belong to"
Stage:

Type: "String"

Default: "dev"

Description: "The stage. E.g. 'dev' or 'prod'"
Prefix:

Type: "String"

Default: "omniaware"

Description: "A prefix used for resource naming. E.g. S3 Bucket prefix."
Region:

Type: "String"

Default: "eu-central-1"

Description: "The region."
KeyManagementIamRoleName:

Type: "String"

Default: ""

Description: "The IAM role name that will be allowed to manage the KMS key"
IngestAccountId:

Type: "String"

Description: "AWS Account ID of the central ingest account"
DataLakeAccountId:

Type: "String"

Description: "AWS Account ID of the central ingest account"
ConsumerAccountId:

Type: "String"

Description: "AWS Account ID of the central ingest account"
DataLakeAccountAdminRoleName:

Type: "String"

Description: "The name of the admin role in the data lake account"
DataLakeAccountProcessTelemetryDatalambdaRoleNameSuffix:

8 The implementation of this module was based on code contributions by colleagues in the OmniAware

project and has been integrated with their explicit permission.

177

38
39

40
41
42

43

45

46
47
48
49
50
51

52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82

83
84
85
86
87
88

89
90

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Type: "String"

Description: "The suffix of the name of the Lambda role in the data lake account

< that handles new raw telemetry data"
DataLakeAccountImageClassificationLambdaRoleNameSuffix:

Type: "String"

Description: "The suffix of the name of the Lambda role in the data lake account

— that handles image classification"
DatalLakeAccountImageExifExtractionLambdaRoleNameSuffix:

Type: "String"

Description: "The suffix of the name of the Lambda role in the data lake account

— that handles image EXIF extraction"
IngestAccountFirehoseIngestRoleNameSuffix:

Type: "String"

Description: "The name of the ingest role in the ingest account"
DatalakeAccountRawTelemetryBucketName:

Type: "String"

Description: "The name of the S3 bucket in the data lake account for raw telemetry

— data"
DatalLakeAccountRawImagesBucketName:

Type: "String"

Description: "The name of the S3 bucket in the data lake account for raw telemetry

— data"
Resources:
S3RawDataKmsKey:
Type: "AWS::KMS::Key"
Properties:

Description: "KMS key for S3 Raw Telemetry data stored in the Data Lake account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
Action: "kms:*"
Resource: "x*"
Allow the Datalake account admin role to use the key.
- Sid: "Allow"
Effect: "Allow"
Principal:
AWS: !Sub ”arn:aws:iam::${DataLakeAccountId}:role/${DataLakeAccountAdminJ
— RoleNamel}"
Action:
- "kms:Decrypt"
Resource: "*"
Allow Kinesis Firehose in the Ingest Account to use the key
when storing data in the respective bucket in the Data Lake account.
https://docs.aws.amazon.com/kms/1atest/developerguide/encrypt_context.htmlJ
— #encryption-context-authorization
- Sid: "Enable cross account Kinesis Firehose access to the KMS key"
Effect: "Allow"

178

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115

116

117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

CORE INFRASTRUCTURE

Principal:
The specific principal role ARN is set in the condition
to allow only the Kinesis Firehose role in the Ingest account.
AWS: !Sub "arn:aws:iam::${IngestAccountId}:root"
Action:
- "kms:Encrypt"
- "kms:Decrypt"
- "kms:ReEncrypt*"
- "kms:GenerateDataKey*"
- "kms:Describex"
Resource: "*"
Condition:
StringEquals:
"kms:CallerAccount": !Ref IngestAccountId
Arnlike:
"aws:PrincipalArn": !Sub “arn:aws:iam::${IngestAccountId}:role/${AppliJ

— cation}-${Stage}-${IngestAccountFirehoseIngestRoleNameSuffix}"
ArnEquals:
"kms :EncryptionContext:aws:s3:arn":
- !Sub "arn:aws:s3:::${DatalakeAccountRawTelemetryBucketName}/*"
- !Sub "arn:aws:s3:::${DatalLakeAccountRawImagesBucketName}/*"
- Sid: "Allow specific to use the key for S3 bucket downloads"
Effect: "Allow"
Principal:
AWS:
- !Sub ”arn:aws:iam::${DataLakeAccountId}:role/${App1ication}—${DataLaJ

— keAccountProcessTelemetryDatalambdaRoleNameSuffix}"
- !Sub ”arn:aws:iam::${DataLakeAccountId}:role/${App1ication}—${DataLaJ

— keAccountImageClassificationLambdaRoleNameSuffix}"
- !Sub ”arn:aws:iam::${DataLakeAccountId}:role/${App1ication}—${DataLaJ
— keAccountImageExifExtractionLambdaRoleNameSuffix}"
Action:
- "kms:Decrypt"
Resource: "*"
Condition:
StringEquals:
"kms:ViaService": !Sub "s3.${Region}.amazonaws.com"
ArnEquals:
"kms :EncryptionContext:aws:s3:arn":
- !Sub "arn:aws:s3:::${DatalakeAccountRawTelemetryBucketName}/*"
S3RawDataKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:
AliasName: !Sub "alias/${Prefix}/datalake/s3/raw"
TargetKeyId: !Ref S3RawDataKmsKey
SnsKmsKey:
Type: "AWS::KMS::Key"
Properties:
Description: "KMS key for SNS topics in the Data Lake account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.

179

147
148
149
150

151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub

< "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"

Action: "kms:*"
Resource: "x"

- Sid: "Allow specific roles of the datalake account to use the key"

Effect: "Allow"
Principal:
AVS:

- !Sub "arn:aws:iam::${DataLakeAccountId}:role/${DataLakeAccountAdminRJ

— oleNamel}"
Action:
- "kms:DescribeKey"
- "kms:Decrypt"
- "kms:GenerateDataKey"
Resource: "*"

Condition:
StringEquals:
"kms:ViaService": !Sub "sns.${Region}.amazonaws.com"
"kms:CallerAccount": !Ref DataLakeAccountId

- Sid: "Allow SNS to use the key"
Effect: "Allow"
Principal:
Service: "sns.amazonaws.com"
Action:
- "kms:Encrypt"
- "kms:Decrypt"
- "kms:ReEncrypt*"
- "kms:GenerateDataKey*"
- "kms:Describex*"
Resource: "x*"

Condition:
StringEquals:
"aws:SourceAccount": !Ref DatalakeAccountId
"aws:sns:sourcelAccount": !'Ref DataLakeAccountId
ArnLike:
"aws:sns:topicArn": !Sub "arn:aws:sns:${Region}:${DatalakeAccountId}:*"

For EventBridge the the condition keys like aws:

— aws:SourceArn are not supported.

SourceAccount and

https://docs.aws.amazon.com/sns/latest/dg/sns—key—management.html#sns—whatJ

— -permissions-for-sse
- Sid: "Allow EventBridge to use the key"
Effect: "Allow"

Principal:
Service: "events.amazonaws.com"
Action:
- "kms:GenerateDataKey*"
- "kms:Decrypt"
Resource: "*"
SnsKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:

AliasName: !Sub "alias/${Prefix}/datalake/sns"
TargetKeyId: !Ref SnsKmsKey
SqsKmsKey:
Type: "AWS::KMS::Key"
Properties:
Description: "KMS key for SQS queues in the Data Lake
Enabled: true

180

account"

204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

CORE INFRASTRUCTURE

EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
Action: "kms:*"
Resource: "*"
- Sid: "Allow SQS to use the key"
Effect: "Allow"
Principal:
Service: "sqgs.amazonaws.com"
Action:
- "kms:Encrypt"
- "kms:Decrypt"
- "kms:ReEncrypt*"
- "kms:GenerateDataKey*"
- "kms:Describex"
Resource: "x"
Condition:
StringEquals:
"aws:SourceAccount": !Ref DatalakeAccountId
ArnlLike:
"aws:SourceArn": !Sub "arn:aws:sqs:${Region}:${DatalakeAccountId}:*"
- Sid: "Allow specific roles of the datalake account to use the key"
Effect: "Allow"
Principal:
AWS:
- !Sub ”arn:aws:iam::${DataLakeAccountId}:role/${DataLakeAccountAdminRJ
— oleName}"
Action:
- "kms:Decrypt"
- "kms:DescribeKey"
- "kms:GenerateDataKey"
Resource: "x"
Condition:
StringEquals:
"kms:ViaService": !Sub "sgs.${Region}.amazonaws.com
"kms:CallerAccount": !Ref DatalakeAccountId
- Sid: "Allow SNS to use the key"
Effect: "Allow"
Principal:
Service: '"sns.amazonaws.com'"
Action:
- "kms:GenerateDataKey*"
- "kms:Decrypt"
Resource: "x"

n

Condition:
StringEquals:
"aws:SourceAccount": !Ref DatalLakeAccountId
ArnlLike:
"aws:SourceArn": !Sub "arn:aws:sns:${Region}:${DatalakeAccountId}:*"

181

263
264
265
266
267

268

269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

298
299
300
301
302
303
304

305
306
307
308

309
310
311
312

313
314
315

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

- Sid: "Allow Lambda to use the key"
Effect: "Allow"
Principal:
AVS:
- !Sub "arn:aws:iam::${DataLakeAccountId}:role/${App1ication}—${DataLaJ

— keAccountProcessTelemetryDataLambdaRoleNameSuffix}"
- !Sub "arn:aws:iam::${DataLakeAccountId}:role/${App1ication}—${DataLaJ

— keAccountImageClassificationLambdaRoleNameSuffix}"
- !Sub "arn:aws:iam::${DataLakeAccountId}:role/${App1ication}—${DataLaJ
— keAccountImageExifExtractionLambdaRoleNameSuffix}"
Action:
- "kms:GenerateDataKey*"
- "kms:Decrypt"
Resource: "x*"
SqsKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:
AliasName: !Sub "alias/${Prefix}/datalake/sqgs"
TargetKeyId: !Ref SqsKmsKey
EventBusKmsKey:
Type: "AWS::KMS::Key"
Properties:
Description: "KMS key for EventBridge in the Data Lake account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
Action: "kms:*"
Resource: "*"
- Sid: "Allow specific roles of the datalake account to describe the key"
Effect: "Allow"
Principal:
AVS:
- !Sub "arn:aws:iam::${DatalakeAccountId}:role/${DatalakeAccountAdminR |
< oleName}"
Action:
- "kms:DescribeKey"
Resource: "*"
- Sid: "Allow specific roles of the datalake account to use the key for
— EventBridge Bus creation"
Effect: "Allow"
Principal:
AWS:
- !Sub "arn:aws:iam::${DatalakeAccountId}:role/${DatalakeAccountAdminR |
— oleNamel}"
Action:
- "kms:GenerateDataKey"
Resource: "*"

182

316
317
318
319
320

321
322
323
324
325
326
327
328
329
330
331
332
333

334

335

336

337

338

339
340
341
342
343
344
345
346
347
348
349
350

351

352
353

354
355
356
357
358
359
360
361
362
363
364
365
366

CORE INFRASTRUCTURE

Condition:
StringEquals:
"kms:ViaService": !Sub "events.${Region}.amazonaws.com"
"kms:CallerAccount": !Ref DatalLakeAccountId
Ref: https://docs.aws.amazon.com/eventbridge/latest/userguide/eb—encryptioJ

— n-key-policy.html#eb-encryption-event-bus-confused-deputy
- Sid: "Allow EventBus to use the key"
Effect: "Allow"
Principal:
Service: "events.amazonaws.com"
Action:
- "kms:Decrypt"
- "kms:GenerateDataKey"
Resource: "x"
Condition:
StringEquals:
"aws:SourceAccount": !Ref DatalLakeAccountId
ArnLike:
"aws:SourceArn": !Sub
— "arn:aws:events:${Region}:${DatalakeAccountId}:event-bus/*"
"kms :EncryptionContext:aws:events:event-bus:arn": !Sub
— "arn:aws:events:${Region}:${DatalakeAccountId}:event-bus/*"
Allow EventBridge to describe the key in order to verify if the key is
— symmetric.
However usage of conidition keys like aws:SourceAccount and aws:SourceArn
< 1is not supported.
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb—encryption—keyJ

— -policy.html#eb-encryption-event-bus-confused-deputy
https://docs.aws.amazon.com/eventbridge/latest/userguide/encryption—archivJ

— es.html#encryption-archives-key-policy
- Sid: "Allow EventBusArchive to use the key"
Effect: "Allow"
Principal:
Service: "events.amazonaws.com"
Action:
- "kms:Decrypt"
- "kms:GenerateDataKey"
- "kms:ReEncrypt*"
Resource: "x"
Condition:
ArnlLike:
"kms :EncryptionContext:aws:events:event-bus:arn": !Sub
— "arn:aws:events:${Region}:${DatalakeAccountId}:event-bus/*"
Allow EventBridge to describe the key in order to verify if the key is
— symmetric.
However condition key to prevent confused deputy is not supported.
https://docs.aws.amazon.com/eventbridge/latest/userguide/encryption—archivJ

— es.html#encryption-archives-key-policy
- Sid: "Allow EventBridge Bus to describe the key"
Effect: "Allow"
Principal:
Service: "events.amazonaws.com"
Action:
- "kms:DescribeKey"
Resource: "x"

EventBusKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:

AliasName: !Sub "alias/${Prefix}/datalake/eventbus"
TargetKeyId: !Ref EventBusKmsKey
CloudwatchLogsKmsKey:

183

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387

388

389
390
391
392
393
394
395
396
397
398
399
400
401
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Type: "AWS::KMS: :Key"
Properties:
Description: "KMS key for CloudWatch logs in the Datalake account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
Action: "kms:*"
Resource: "*"
Ref: https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt—log—J

— data-kms.html#cmk-permissions
- Sid: "Allow Key usage for CloudWatch log groups and streams related S3
— event handling in the Data Lake account"
Effect: "Allow"
Principal:
Service: !Sub "logs.${AWS::Region}.amazonaws.com"
Action:
- "kms:Encrypt"
- "kms:Decrypt"
- "kms:ReEncrypt*"
- "kms:GenerateDataKey*"
- "kms:Describex*"
Resource: "*"
Condition:
ArnLike:
"kms :EncryptionContext:aws:logs:arn":
- !Sub "arn:aws:logs:${Region}:${DataLakeAccountId}:log—group:/${AppJ
— lication}/#*"
CloudwatchLogsKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:
AliasName: !Sub "alias/${Prefix}/datalake/logs"
TargetKeyId: !Ref CloudwatchLogsKmsKey
LambdaKmsKey:
Type: "AWS::KMS::Key"
Properties:
Description: "KMS key for all Lambda functions in the Datalake account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30
Overwriting default policy
KeyPolicy:
Version: "2012-10-17"
Statement:
Default Statement. TODO: MUST be restricted. Details to be clarified.
- Sid: "Enable IAM User Permissions"

184

424
425
426

427
428
429
430
431
432

433
434
435
436
437
438
439
440
441
442
443
444
445

446
447
448
449
450
451
452
453
454
455
456
457
458

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

CORE INFRASTRUCTURE

Effect: "Allow"
Principal:
AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
Action: "kms:*"
Resource: '"x"
- Sid: "Allow datalake account admin to create grant"
Effect: "Allow"
Principal:
AWS: !Sub "arn:aws:iam::${DataLakeAccountId}:role/${DataLakeAccountAdminJ
< RoleNamel}"
Action:
- "kms:CreateGrant"
Resource: '"x"

Condition:
StringEquals:
"kms:ViaService": !Sub "lambda.${Region}.amazonaws.com"
"kms:CallerAccount": !Ref DatalLakeAccountId
Bool:

"kms : GrantIsForAWSResource": true
- Sid: "Allow datalake account admin to encrypt Lambda environment variables"
Effect: "Allow"
Principal:
AWS: !Sub "arn:aws:iam::${DataLakeAccountId}:role/${DataLakeAccountAdminJ
— RoleNamel}"
Action:
- "kms:Encrypt"
- "kms:ReEncrypt*"
- "kms:DescribeKey"
Resource: "*"
Condition:
StringEquals:
"kms:ViaService": !Sub "lambda.${Region}.amazonaws.com"
"kms:CallerAccount": !Ref DatalLakeAccountId
- Sid: "Allow datalake account admin to view Lambda environment variables"
Effect: "Allow"
Principal:
AWS: !Sub "arn:aws:iam::${DataLakeAccountId}:role/${DataLakeAccountAdminJ
— RoleNamel}"
Action:
- "kms:Decrypt"
Resource: "x"
Condition:
ArnEquals:
"kms :EncryptionContext:aws:lambda:FunctionArn":
- !Sub "arn:aws:lambda:${Region}:${DatalakeAccountId}:function:*"
LambdaDatalakeKmsKeyAlias:
Type: "AWS::KMS::Alias"
Properties:
AliasName: !Sub "alias/${Prefix}/datalake/lambda"
TargetKeyId: !Ref LambdaKmsKey
DynamoDbKmsKey :
Type: "AWS::KMS::Key"
Properties:
Description: "KMS key for all dynamo db tables in the Datalake account"
Enabled: true
EnableKeyRotation: true
KeySpec: "SYMMETRIC_DEFAULT"
KeyUsage: "ENCRYPT_DECRYPT"
MultiRegion: false
PendingWindowInDays: 30

185

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

481 # Overwriting default policy
482 KeyPolicy:
483 Version: "2012-10-17"
484 Statement:
485 # Default Statement. TODO: MUST be restricted. Details to be clarified.
486 - Sid: "Enable IAM User Permissions"
487 Effect: "Allow"
488 Principal:
489 AWS: !Sub
— "arn:aws:iam::${AWS::AccountId}:role/${KeyManagementIamRoleName}"
490 Action: "kms:*"
491 Resource: "*"
492 # Based on https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ |
— encryption.usagenotes.html#dynamodb-kms-authz
493 - Sid: "Allow specific roles of the datalake account to use the key for
< DynamoDB table creation"
494 Effect: "Allow"
495 Principal:
496 AWS:
497 - !Sub "arn:aws:iam: :${DataLakeAccountId}:role/${DataLakeAccountAdminRJ
< oleNamel}"
498 Action:
499 - "kms:Encrypt"
500 - "kms:ReEncrypt*"
501 - "kms:GenerateDataKey*"
502 - "kms:DescribeKey"
503 - "kms:CreateGrant"
504 Resource: "*"
505 Condition:
506 StringEquals:
507 "kms:ViaService": !Sub "dynamodb.${Region}.amazonaws.com"
508 - Sid: "Allow specific IAM roles of the datalake account to use the key for
— DynamoDB table operations"
509 Effect: "Allow"
510 Principal:
511 AWS:
512 - !Sub "arn:aws:iam: :${DataLakeAccountId}:role/${DataLakeAccountAdminRJ
— oleNamel}"
513 - !Sub "arn:aws:iam: :${DataLakeAccountId}:role/${App1ication}—${DataLaJ
— keAccountProcessTelemetryDatalLambdaRoleNameSuffix}"
514 - !Sub "arn:aws:iam: :${DataLakeAccountId}:role/${App1ication}—${DataLaJ
— keAccountImageExifExtractionLambdaRoleNameSuffix}"
515 Action:
516 - "kms:Decrypt"
517 Resource: "*"
518 Condition:
519 StringEquals:
520 "kms:ViaService": !Sub "dynamodb.${Region}.amazonaws.com"
521 DynamoDbKmsKeyAlias:
522 Type: "AWS::KMS::Alias"
523 Properties:
524 AliasName: !Sub "alias/${Prefix}/datalake/dynamodb"
525 TargetKeyId: !Ref DynamoDbKmsKey
9

9 The implementation of this module was based on code contributions by colleagues in the OmniAware
project and has been integrated with their explicit permission.

186

O 0 N N Ul W N =

R s s s R R R R G L) W L L M W W W W NN RNNNRNRNRN S B S s s s
o UG R OO RS OIS T RO RS ORIRIRNATRERDNR,SO®I G DN~ O

49
50
51
52
53
54
55
56
57

10_guardrails.yaml
Instantiates detective and preventive controls for all environments.

CORE INFRASTRUCTURE

AWSTemplateFormatVersion: "2010-09-09"
Description: "A stack for all preventive and detective guardrails"

Parameters:

Application:
Type: "String"
Default: "OmniAware"

Description: "Name of the application the resources belong to"

Stage:

Type: "String"

Default: "dev"

Description: "The stage. E.g. 'dev' or 'prod'"
Prefix:

Type: "String"

Default: "omniaware"

Description: "A prefix used for resource naming.

Region:
Type: "String"
Default: "eu-central-1"
Description: "The region."
AggregatorName:
Type: String
Description: Name for the AWS Config Aggregator
Default: MultiAccountConfigAggregator
AuditAccountId:
Type: String

E.g. S3 Bucket prefix."

Description: AWS Account ID of the central audit account

Default: <AccountId>
SecurityAccountId:
Type: String

Description: AWS Account ID of the central audit account

Default: <AccountId>
IngestAccountId:
Type: String

Description: AWS Account ID of the central ingest account

Default: <AccountId>
DatalakeAccountId:
Type: String

Description: AWS Account ID of the central ingest account

Default: <AccountId>
ConsumerAccountId:
Type: String

Description: AWS Account ID of the central ingest account

Default: <AccountId>
ServiceName:

Type: String

Default: s3

Description: 'The name of the AWS service to check for VPC endpoints (e.g., s3,

— dynamodb, ec2, etc.)'
AllowedValues:
- "com.amazonaws .${Region}.s3"

- "com.amazonaws .${Region}.dynamodb"

- "com.amazonaws .${Region}.ec2"

- "com.amazonaws .${Region}.ssm"

- "com.amazonaws.${Region}.logs"

- "com.amazonaws .${Region}.monitoring"

- "com.amazonaws .${Region} .kms"

- "com.amazonaws.${Region}.secretsmanager"

187

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

- "com.amazonaws.${Region}.sqgs

- "com.amazonaws.${Region}.sns"

- "com.amazonaws.${Region}.lambda"

- "com.amazonaws.${Region}.kinesis"
- "com.amazonaws.${Region}.apigateway"

- "com.amazonaws.${Region}.ecs"

- "com.amazonaws.${Region}.glue"
- "com.amazonaws.${Region}.athena"

- "com.amazonaws.${Region}.cloudtrail"

- "com.amazonaws.${Region}.cloudwatch"
- "com.amazonaws.${Region}.sagemaker"

- "com.amazonaws.${Region}.bedrock"

- "com.amazonaws.${Region}.transcribe"
- "com.amazonaws.${Region}.rekognition"

- "com.amazonaws.${Region}.polly"

- "com.amazonaws.${Region}.codebuild"
- "com.amazonaws.${Region}.codepipeline"
AuthorizedTcpPorts:
Type: String
Default: '443'
Description: 'Comma-separated list of TCP ports authorized to be open to 0.0.0.0/0'
AuthorizedUdpPorts:
Type: String
Default: ''
Description: 'Comma-separated list of UDP ports authorized to be open to 0.0.0.0/0'
RestrictedProtocols:
Type: String
Default: '6,17'
Description: 'Comma-separated list of protocols to restrict (e.g., 6=TCP, 17=UDP)'
RestrictedPorts:

Type: String

Default: '443'

Description: 'Comma-separated list of ports to restrict from the public internet'
RestrictedPortScope:

Type: String

Default: 'public' # Can be 'public' or 'all'

AllowedValues:

- 'all'

Description: 'Define which security group ingress rules to check, "public" means

— ingress from 0.0.0.0/0, "all" means all ingress rules'
ExcludeSecurityGroups:

Type: String

Default: ''

Description: 'Comma-separated list of security group IDs to exclude from the check'
AuditBucketName:

Type: String

Default: !ImportValue AuditBucketName

Description: 'Name of the audit bucket'
ConfigBucketName:

Type: String

Default: !TImportValue ConfigBucketName

Description: 'Name of the config bucket'

Resources:

IAM Role for AWS Config
ConfigServiceRole:
Type: AWS::IAM::Role
Properties:

AssumeRolePolicyDocument:

188

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

CORE INFRASTRUCTURE

Version: '2012-10-17'

Statement:
- Effect: Allow
Principal:

Service: config.amazonaws.com
Action: sts:AssumeRole
ManagedPolicyArns:
- arn:aws:iam::aws:policy/service-role/AWS_ConfigRole
Policies:
- PolicyName: ConfigDeliveryPermissions
PolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Action:
- s3:PutObject
Resource: !Sub ”arn:aws:sB:::${ConfigBucketName}—${AuditAccountId}/AWSJ

— Logs/${AWS: : AccountId}/*"
Condition:
StringlLike:
s3:x-amz-acl: bucket-owner-full-control
- Effect: Allow
Action:
- s3:GetBucketAcl
Resource: !Sub "arn:aws:s3:::${ConfigBucketName}-${AuditAccountId}"
- Effect: Allow
Action:
- sns:Publish
Resource: !ImportValue ConfigSNSTopicArn
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

AWS Config Recorder
ConfigRecorder:
Type: AWS::Config::ConfigurationRecorder
Properties:
Name: default
RecordingGroup:
Al1Supported: true
IncludeGlobalResourceTypes: true
RoleARN: !GetAtt ConfigServiceRole.Arn

AWS Config Delivery Channel
ConfigDeliveryChannel:
Type: AWS::Config::DeliveryChannel
Properties:
ConfigSnapshotDeliveryProperties:
DeliveryFrequency: Six_Hours
S3BucketName: !ImportValue ConfigBucketName
SnsTopicARN: !TImportValue ConfigSNSTopicArn

========== Common Config Rules for all accounts ==========
AccessKeyRotationRule:
Type: 'AWS::Config::ConfigRule'
Properties:
ConfigRuleName: 'access-keys-rotated'

189

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Source:

Owner: 'AWS'

Sourceldentifier: 'ACCESS_KEYS_ROTATED'
Tags:

- Key: "Stack"

Value: !'Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

IAMPasswordPolicyRule:
Type: 'AWS::Config::ConfigRule'

Properties:
ConfigRuleName: 'iam-password-policy'
Source:
Owner: 'AWS'
Sourceldentifier: 'IAM_PASSWORD_POLICY'
Tags:
- Key: "Stack"

Value: !'Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

IAMUserMFAEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: iam-user-mfa-enabled
Description: Checks whether AWS Identity and Access Management (IAM) users have
— multi-factor authentication (MFA) enabled.
Source:
Owner: AWS
Sourceldentifier: IAM_USER_MFA_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

IAMUserNoPoliciesCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: iam-user-no-policies-check
Description: Checks that none of your IAM users have policies attached. IAM users
— must inherit permissions from IAM groups or roles.
Source:
Owner: AWS
Sourceldentifier: IAM_USER_NO_POLICIES_CHECK
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !'Ref Stage

S3BucketPublicReadProhibitedRule:

190

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

287
288
289
290
291
292
293
294

CORE INFRASTRUCTURE

Type: 'AWS::Config::ConfigRule'

Properties:
ConfigRuleName: 's3-bucket-public-read-prohibited'
Source:
Owner: 'AWS'
Sourceldentifier: 'S3_BUCKET_PUBLIC_READ_PROHIBITED'
Tags:
- Key: "Stack"

Value: !Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

S3BucketPublicWriteProhibitedRule:
Type: 'AWS::Config::ConfigRule'

Properties:
ConfigRuleName: 's3-bucket-public-write-prohibited'
Source:
Owner: 'AWS'
Sourceldentifier: 'S3_BUCKET_PUBLIC_WRITE_PROHIBITED'
Tags:
- Key: "Stack"

Value: !Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

S3BucketServerSideEncryptionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-bucket-server-side-encryption-enabled
Description: Checks that your Amazon S3 bucket either has Amazon S3 default
— encryption enabled or that the S3 bucket policy explicitly denies put-object
— requests without server-side encryption.
Source:
Owner: AWS
Sourceldentifier: S3_BUCKET_SERVER_SIDE_ENCRYPTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

S3AccessPointInVpcOnly:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-access-point-in-vpc-only
Description: Checks if Amazon S3 access points are configured to accept requests
— from a Virtual Private Cloud (VPC) only.
Source:
Owner: AWS
Sourceldentifier: S3_ACCESS_POINT_IN_VPC_ONLY
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application

191

295
296
297
298
299
300
301
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

- Key: "Stage"
Value: !Ref Stage

S3AccessPointPublicAccessBlocks:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-access-point-public-access-blocks
Description: Evaluates if an S3 access point is configured with a restrictive
— PublicAccessBlock configuration.
Source:
Owner: AWS
Sourceldentifier: S3_ACCESS_POINT_PUBLIC_ACCESS_BLOCKS
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

S3AccountLevelPublicAccessBlocks:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-account-level-public-access-blocks
Description: Checks if the required public access block settings are configured
— from account level.
Source:
Owner: AWS
Sourceldentifier: S3_ACCOUNT_LEVEL_PUBLIC_ACCESS_BLOCKS
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

S3BucketAclProhibited:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-bucket-acl-prohibited
Description: Checks if Amazon S3 Buckets allow user permissions through access
— control lists (ACLs).
Source:
Owner: AWS
Sourceldentifier: S3_BUCKET_ACL_PROHIBITED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

S3BucketEncryptionRule:
Type: 'AWS::Config::ConfigRule'
Properties:
ConfigRuleName: 's3-bucket-server-side-encryption-enabled'’
Scope:
ComplianceResourceTypes:

- 'AWS::S3::Bucket’

192

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

CORE INFRASTRUCTURE

Source:

Owner: 'AWS'

Sourceldentifier: 'S3_BUCKET_SERVER_SIDE_ENCRYPTION_ENABLED'
Tags:

- Key: "Stack"

Value: !Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

S3BucketLevelPublicAccessProhibited:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-bucket-level-public-access-prohibited
Description: Checks if Amazon S3 buckets have public access blocks configured at
— the bucket level.
Source:
Owner: AWS
Sourceldentifier: S3_BUCKET_LEVEL_PUBLIC_ACCESS_PROHIBITED
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

S3BucketDefaultLockEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-bucket-default-lock-enabled
Description: Checks if Amazon S3 buckets have lock configurations enabled by
— default.
Source:
Owner: AWS
Sourceldentifier: S3_BUCKET_DEFAULT_LOCK_ENABLED
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

S3BucketMfaDeleteEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: s3-bucket-mfa-delete-enabled
Description: Checks if Amazon S3 buckets have MFA delete enabled.
Source:
Owner: AWS
Sourceldentifier: S3_BUCKET_MFA_DELETE_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

193

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

412 S3BucketPolicyNotMorePermissive:

413 Type: AWS::Config::ConfigRule

414 Properties:

415 ConfigRuleName: s3-bucket-policy-not-more-permissive

416 Description: Checks if Amazon S3 bucket policies do not allow more permissive
< actions than the baseline.

417 Source:

418 Owner: AWS

419 Sourceldentifier: S3_BUCKET_POLICY_NOT_MORE_PERMISSIVE

420 Tags:

421 - Key: "Stack"

422 Value: !'Ref AWS::StackName

423 - Key: "Application"

424 Value: !Ref Application

425 - Key: "Stage"

426 Value: !Ref Stage

427

428 S3BucketSslRequestsOnly:

429 Type: AWS::Config::ConfigRule

430 Properties:

431 ConfigRuleName: s3-bucket-ssl-requests-only

432 Description: Checks if Amazon S3 buckets have policies that require requests to
— use Secure Socket Layer (SSL).

433 Source:

434 Owner: AWS

435 Sourceldentifier: S3_BUCKET_SSL_REQUESTS_ONLY

436 Tags:

437 - Key: "Stack"

438 Value: !Ref AWS::StackName

439 - Key: "Application"

440 Value: !Ref Application

441 - Key: "Stage"

442 Value: !Ref Stage

443

444 S3BucketVersioningEnabled:

445 Type: AWS::Config::ConfigRule

446 Properties:

447 ConfigRuleName: s3-bucket-versioning-enabled

448 Description: Checks if versioning is enabled for your S3 buckets.

449 Source:

450 Owner: AWS

451 Sourceldentifier: S3_BUCKET_VERSIONING_ENABLED

452 Tags:

453 - Key: "Stack"

454 Value: !'Ref AWS::StackName

455 - Key: "Application"

456 Value: !Ref Application

457 - Key: "Stage"

458 Value: !Ref Stage

459

460 S3DefaultEncryptionKMS:

461 Type: AWS::Config::ConfigRule

462 Properties:

463 ConfigRuleName: s3-default-encryption-kms

464 Description: Checks if the Amazon S3 buckets are encrypted with AWS Key
< Management Service (AWS KMS).

465 Source:

466 Owner: AWS

467 Sourceldentifier: S3_DEFAULT_ENCRYPTION_KMS

468 Tags:

469 - Key: "Stack"

194

470
471
472
473
474
475
476
477
478
479
480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

CORE INFRASTRUCTURE

Value: !Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

CloudTrailEncryptionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: cloud-trail-encryption-enabled
Description: Checks if AWS CloudTrail is configured to use server-side encryption
— (SSE) with AWS KMS keys (SSE-KMS) encryption.
Source:
Owner: AWS
Sourceldentifier: CLOUD_TRAIL_ENCRYPTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

CloudTrailCloudWatchLogsEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: cloud-trail-cloud-watch-logs-enabled
Description: Checks if AWS CloudTrail trails are configured to send logs to
— CloudWatch Logs.
Source:
Owner: AWS
Sourceldentifier: CLOUD_TRAIL_CLOUD_WATCH_LOGS_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

MultiRegionCloudTrailEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: multi-region-cloud-trail-enabled
Description: Checks if there is at least one multi-region AWS CloudTrail.
Source:
Owner: AWS
Sourceldentifier: MULTI_REGION_CLOUD_TRAIL_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

CloudTrailEnabledRule:
Type: 'AWS::Config::ConfigRule'
Properties:
ConfigRuleName: 'cloudtrail-enabled'
Source:

195

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

APPENDIX - IMPLEMENTATION: SOURCE CODE AND

Owner: 'AWS'

Sourceldentifier: 'CLOUD_TRAIL_ENABLED'
Tags:

- Key: "Stack"

Value: !Ref AWS::StackName
- Key: "Application"

Value: !'Ref Application
- Key: "Stage"

Value: !Ref Stage

EBSVolumeEncryptionRule:
Type: 'AWS::Config::ConfigRule'
Properties:
ConfigRuleName: 'ebs-encrypted-volumes'
Scope:
ComplianceResourceTypes:
- "AWS::EC2::Volume'

Source:

Owner: 'AWS'

Sourceldentifier: 'ENCRYPTED_VOLUMES'
Tags:

- Key: "Stack"

Value: !Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

EC2SecurityGroupRule:
Type: 'AWS::Config::ConfigRule'
Properties:
ConfigRuleName: 'restricted-common-ports'
Scope:

ComplianceResourceTlypes:
- "AWS::EC2::SecurityGroup'

Source:

Owner: 'AWS'

Sourceldentifier: 'INCOMING_SSH_DISABLED'
Tags:

- Key: "Stack"

Value: !Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

VPCFlowLogsEnabledRule:
Type: 'AWS::Config::ConfigRule'

Properties:
ConfigRuleName: 'vpc-flow-logs-enabled'
Source:
Owner: 'AWS'
Sourceldentifier: 'VPC_FLOW_LOGS_ENABLED'
Tags:
- Key: "Stack"

Value: !Ref AWS::StackName
- Key: "Application"

Value: !Ref Application
- Key: "Stage"

Value: !Ref Stage

196

DEPLOYMENT ARTEFACTS

590
591
592
593
594

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

CORE INFRASTRUCTURE

EC2EbsEncryptionByDefault:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ec2-ebs-encryption-by-default
Description: Checks if Amazon Elastic Block Store (EBS) encryption is enabled by
— default.
Source:
Owner: AWS
Sourceldentifier: EC2_EBS_ENCRYPTION_BY_DEFAULT
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

EC2IMDSv2Check:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ec2-imdsv2-check
Description: Checks if Amazon EC2 instances are configured with Instance Metadata
— Service Version 2 (IMDSv2).
Source:
Owner: AWS
Sourceldentifier: EC2_IMDSV2_CHECK
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

EC2InstanceDetailedMonitoringEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ec2-instance-detailed-monitoring-enabled
Description: Checks if detailed monitoring is enabled for EC2 instances.
Source:
Owner: AWS
Sourceldentifier: EC2_INSTANCE_DETAILED_MONITORING_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

EC2InstanceNoPublicIP:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ec2-instance-no-public-ip
Description: Checks if EC2 instances have public IPs assigned.
Source:
Owner: AWS
Sourceldentifier: EC2_INSTANCE_NO_PUBLIC_IP
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName

197

649
650
651
652
653
654
655
656
657
658

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

EC2NoAmazonKeyPair:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ec2-no-amazon-key-pair
Description: Checks if running Amazon EC2 instances are launched using Amazon EC2
— key pairs.
Source:
Owner: AWS
Sourceldentifier: EC2_NO_AMAZON_KEY_PAIR
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

EC2StoppedInstance:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ec2-stopped-instance
Description: Checks if there are instances stopped for more than the allowed
— number of days.
Source:
Owner: AWS
SourceIdentifier: EC2_STOPPED_INSTANCE
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

EC2VolumeInuseCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ec2-volume-inuse-check
Description: Checks if EBS volumes are attached to EC2 instances.
Source:
Owner: AWS
Sourceldentifier: EC2_VOLUME_INUSE_CHECK
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

InstancesInVPC:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: instances-in-vpc
Description: Checks if your EC2 instances belong to a virtual private cloud

— (VPC).

198

CORE INFRASTRUCTURE

707 Source:

708 Owner: AWS

709 Sourceldentifier: INSTANCES_IN_VPC

710 Tags:

711 - Key: "Stack"

712 Value: !Ref AWS::StackName

713 - Key: "Application"

714 Value: !Ref Application

715 - Key: "Stage"

716 Value: !Ref Stage

717

718 # Network Rules

719 NaclNoUnrestrictedSshRdp:

720 Type: AWS::Config::ConfigRule

721 Properties:

722 ConfigRuleName: nacl-no-unrestricted-ssh-rdp

723 Description: Checks if default ports for SSH/RDP ingress traffic in Network ACLs
< are unrestricted.

724 Source:

725 Owner: AWS

726 Sourceldentifier: NACL_NO_UNRESTRICTED_SSH_RDP

727 Tags:

728 - Key: "Stack"

729 Value: !Ref AWS::StackName

730 - Key: "Application"

731 Value: !Ref Application

732 - Key: "Stage"

733 Value: !Ref Stage

734

735 NoUnrestrictedRouteToIGW:

736 Type: AWS::Config::ConfigRule

737 Properties:

738 ConfigRuleName: no-unrestricted-route-to-igw

739 Description: Checks if there are public routes in the route table to an Internet
— Gateway (IGW).

740 Source:

741 Owner: AWS

742 Sourceldentifier: NO_UNRESTRICTED_ROUTE_TO_IGW

743 Tags:

744 - Key: "Stack"

745 Value: !Ref AWS::StackName

746 - Key: "Application"

747 Value: !Ref Application

748 - Key: "Stage"

749 Value: !Ref Stage

750

751 SubnetAutoAssignPublicIpDisabled:

752 Type: AWS::Config::ConfigRule

753 Properties:

754 ConfigRuleName: subnet-auto-assign-public-ip-disabled

755 Description: Checks if Amazon Virtual Private Cloud (VPC) subnets are assigned a
— public IP address.

756 Source:

757 Owner: AWS

758 Sourceldentifier: SUBNET_AUTO_ASSIGN_PUBLIC_IP_DISABLED

759 Tags:

760 - Key: "Stack"

761 Value: !Ref AWS::StackName

762 - Key: "Application"

763 Value: !Ref Application

764 - Key: "Stage"

199

765
766
767
768
769
770
771
772

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

822

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Value: !Ref Stage

ELB Rules
ELBv2AcmCertificateRequired:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: elbv2-acm-certificate-required
Description: Checks if Application Load Balancers and Network Load Balancers have
— listeners configured to use certificates from AWS Certificate Manager (ACM).
Source:
Owner: AWS
Sourceldentifier: ELBV2_ACM_CERTIFICATE_REQUIRED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

ELBDeletionProtectionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: elb-deletion-protection-enabled
Description: Checks if Elastic Load Balancing has deletion protection enabled.
Source:
Owner: AWS
Sourceldentifier: ELB_DELETION_PROTECTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

ELBv2MultipleAZ:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: elbv2-multiple-az
Description: Checks if an Elastic Load Balancer V2 (Application, Network or
< Gateway) has registered instances from multiple Availability Zomes.
Source:
Owner: AWS
Sourceldentifier: ELBV2_MULTIPLE_AZ
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

ECS Rules
ECSFargateLatestPlatformVersion:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: ecs-fargate-latest-platform-version
Description: Checks if Amazon ECS Fargate tasks are using the latest Fargate
— platform version.
Source:

200

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

CORE INFRASTRUCTURE

Owner: AWS
Sourceldentifier: ECS_FARGATE_LATEST_PLATFORM_VERSION
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

API Gateway Rules
APIGWSs1Enabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: api-gw-ssl-enabled
Description: Checks if Amazon API Gateway stages have SSL certificates enabled.
Source:
Owner: AWS
Sourceldentifier: API_GW_SSL_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

APIGWAssociatedWithWAF:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: api-gw-associated-with-waf
Description: Checks if an API Gateway stage is using an AWS WAF Web ACL.
Source:
Owner: AWS
Sourceldentifier: API_GW_ASSOCIATED_WITH_WAF
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

APIGWv2AccessLogsEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: api-gwv2-access-logs-enabled
Description: Checks if Amazon API Gateway V2 stages have access logging enabled.
Source:
Owner: AWS
Sourceldentifier: API_GWV2_ACCESS_LOGS_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Athena Rules
AthenaWorkgroupEncryptedAtRest:

201

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

927
928
929
930
931
932
933
934
935
936
937

938
939
940
941
942
943

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: athena-workgroup-encrypted-at-rest
Description: Checks if Amazon Athena workgroups are encrypted at rest.
Source:
Owner: AWS
Sourceldentifier: ATHENA_WORKGROUP_ENCRYPTED_AT_REST
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

KMS Rules
KMSKeyPolicyNoPublicAccess:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: kms-key-policy-no-public-access
Description: Checks if AWS KMS keys are not publicly accessible.
Source:
Owner: AWS
Sourceldentifier: KMS_KEY_POLICY_NO_PUBLIC_ACCESS
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

GuardDuty Rules
GuardDutyS3ProtectionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: guardduty-s3-protection-enabled
Description: Checks if Amazon GuardDuty has S3 Protection enabled.
Source:
Owner: AWS
Sourceldentifier: GUARDDUTY_S3_PROTECTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

GuardDutyEC2ProtectionRuntimeEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: guardduty-ec2-protection-runtime-enabled
Description: Checks if Amazon GuardDuty has EC2 Protection with runtime
< monitoring enabled.
Source:
Owner: AWS
Sourceldentifier: GUARDDUTY_EC2_PROTECTION_RUNTIME_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName

202

944
945
946
947
948
949
950
951
952
953

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

CORE INFRASTRUCTURE

- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

GuardDutyECSProtectionRuntimeEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: guardduty-ecs-protection-runtime-enabled
Description: Checks if Amazon GuardDuty has ECS Protection with runtime
— monitoring enabled.
Source:
Owner: AWS
Sourceldentifier: GUARDDUTY_ECS_PROTECTION_RUNTIME_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

GuardDutyLambdaProtectionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: guardduty-lambda-protection-enabled
Description: Checks if Amazon GuardDuty has Lambda Protection enabled.
Source:
Owner: AWS
Sourceldentifier: GUARDDUTY_LAMBDA_PROTECTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

GuardDutyMalwareProtectionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: guardduty-malware-protection-enabled
Description: Checks if Amazon GuardDuty has Malware Protection enabled.
Source:
Owner: AWS
Sourceldentifier: GUARDDUTY_MALWARE_PROTECTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Glue Rules
GlueMLTransformEncryptedAtRest:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: glue-ml-transform-encrypted-at-rest

Description: Checks if AWS Glue machine learning transforms are encrypted at

— rest.

203

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

1054
1055
1056
1057
1058
1059
1060
1061

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Source:
Owner: AWS
Sourceldentifier: GLUE_ML_TRANSFORM_ENCRYPTED_AT_REST
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Backup Rules
BackupRecoveryPointEncrypted:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: backup-recovery-point-encrypted
Description: Checks if a recovery point is encrypted.
Source:
Owner: AWS
Sourceldentifier: BACKUP_RECOVERY_POINT_ENCRYPTED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

CodeDeploy Rules
CodeDeployLambdaAllAtOnceTrafficShiftDisabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: codedeploy-lambda-allatonce-traffic-shift-disabled
Description: Checks if AWS CodeDeploy Lambda deployment group traffic shifting
— configuration is set to all-at-once.
Source:
Owner: AWS
Sourceldentifier: CODEDEPLOY_LAMBDA_ALLATONCE_TRAFFIC_SHIFT_DISABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

DynamoDB Rules
DynamoDBPITREnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: dynamodb-pitr-enabled
Description: Checks if point-in-time recovery (PITR) is enabled for Amazon
— DynamoDB tables.
Source:
Owner: AWS
Sourceldentifier: DYNAMODB_PITR_ENABLED
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application

204

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

1119

CORE INFRASTRUCTURE

- Key: "Stage"
Value: !Ref Stage

DynamoDBTableDeletionProtectionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: dynamodb-table-deletion-protection-enabled
Description: Checks if Amazon DynamoDB tables have deletion protection enabled.
Source:
Owner: AWS
Sourceldentifier: DYNAMODB_TABLE_DELETION_PROTECTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

DynamoDBTableEncryptedKMS:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: dynamodb-table-encrypted-kms
Description: Checks if Amazon DynamoDB tables are encrypted with AWS Key
— Management Service (AWS KMS).
Source:
Owner: AWS
Sourceldentifier: DYNAMODB_TABLE_ENCRYPTED_KMS
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

DynamoDBTableEncryptionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: dynamodb-table-encryption-enabled
Description: Checks if Amazon DynamoDB tables are encrypted and checks their
— status.
Source:
Owner: AWS
Sourceldentifier: DYNAMODB_TABLE_ENCRYPTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Kinesis Rules
KinesisFirehoseDeliveryStreamEncrypted:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: kinesis-firehose-delivery-stream-encrypted
Description: Checks if Amazon Kinesis Firehose delivery streams are encrypted at
— rest with AWS Key Management Service (AWS KMS).
Source:

205

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Owner: AWS
Sourceldentifier: KINESIS_FIREHOSE_DELIVERY_STREAM_ENCRYPTED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

Lambda Rules
LambdaConcurrencyCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: lambda-concurrency-check
Description: Checks if the Lambda function is configured with function-level
— concurrent execution limit.
Source:
Owner: AWS
Sourceldentifier: LAMBDA_CONCURRENCY_CHECK
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

LambdaInsideVPC:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: lambda-inside-vpc
Description: Checks if AWS Lambda functions are in an Amazon Virtual Private
— Cloud.
Source:
Owner: AWS
SourceIdentifier: LAMBDA_INSIDE_VPC
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

LambdaVPCMultiAZCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: lambda-vpc-multi-az-check
Description: Checks if Lambda functions are configured to use more than one
— Availability Zone.
Source:
Owner: AWS
Sourceldentifier: LAMBDA_VPC_MULTI_AZ_CHECK
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

206

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

1234
1235

CORE INFRASTRUCTURE

LambdaFunctionPublicAccessProhibited:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: lambda-function-public-access-prohibited
Description: Checks if the Lambda function policy prohibits public access.
Source:
Owner: AWS
Sourceldentifier: LAMBDA_FUNCTION_PUBLIC_ACCESS_PROHIBITED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Network Firewall Rules
NetFWDeletionProtectionEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: netfw-deletion-protection-enabled
Description: Checks if an AWS Network Firewall policy has deletion protection
— enabled.
Source:
Owner: AWS
Sourceldentifier: NETFW_DELETION_PROTECTION_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

NetFWStatelessRuleGroupNotEmpty:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: netfw-stateless-rule-group-not-empty
Description: Checks if an AWS Network Firewall stateless rule group contains
— rules.
Source:
Owner: AWS
Sourceldentifier: NETFW_STATELESS_RULE_GROUP_NOT_EMPTY
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

OpenSearch Rules
OpenSearchEncryptedAtRest:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: opensearch-encrypted-at-rest
Description: Checks if Amazon OpenSearch Service domains have encryption at rest
— configuration enabled.
Source:
Owner: AWS

207

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Sourceldentifier: OPENSEARCH_ENCRYPTED_AT_REST
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

OpenSearchInVPCOnly:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: opensearch-in-vpc-only
Description: Checks if Amazon OpenSearch Service domains are within an Amazon
— Virtual Private Cloud (VPC).
Source:
Owner: AWS
Sourceldentifier: OPENSEARCH_IN_VPC_ONLY
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

OpenSearchNodeToNodeEncryptionCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: opensearch-node-to-node-encryption-check
Description: Checks if Amazon OpenSearch Service nodes are configured with
— node-to-node encryption.
Source:
Owner: AWS
Sourceldentifier: OPENSEARCH_NODE_TO_NODE_ENCRYPTION_CHECK
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

OpenSearchHTTPSRequired:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: opensearch-https-required
Description: Checks if Amazon OpenSearch domains have HTTPS required for all
— traffic.
Source:
Owner: AWS
Sourceldentifier: OPENSEARCH_HTTPS_REQUIRED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

OpenSearchAccessControlEnabled:

208

1294
1295
1296
1297

1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329

1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

1346
1347
1348
1349
1350

CORE INFRASTRUCTURE

Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: opensearch-access-control-enabled
Description: Checks if Amazon OpenSearch domains have fine-grained access control
— enabled.
Source:
Owner: AWS
Sourceldentifier: OPENSEARCH_ACCESS_CONTROL_ENABLED
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

OpenSearchUpdateCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: opensearch-update-check
Description: Checks if Amazon OpenSearch Service domains are on the latest
— service software version.
Source:
Owner: AWS
Sourceldentifier: OPENSEARCH_UPDATE_CHECK
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

OpenSearchAuditLoggingEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: opensearch-audit-logging-enabled
Description: Checks if Amazon OpenSearch Service domains have audit logging
< enabled.
Source:
Owner: AWS
Sourceldentifier: OPENSEARCH_AUDIT_LOGGING_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

SagemakerDomainInVPC:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: sagemaker-domain-in-vpc
Description: Checks if an Amazon SageMaker domain is configured with VPC Only
— mode.
Source:
Owner: AWS
Sourceldentifier: SAGEMAKER_DOMAIN_IN_VPC
Tags:
- Key: "Stack"

209

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

1351 Value: !'Ref AWS::StackName

1352 - Key: "Application"

1353 Value: !'Ref Application

1354 - Key: "Stage"

1355 Value: !Ref Stage

1356

1357 SagemakerModelInVPC:

1358 Type: AWS::Config::ConfigRule

1359 Properties:

1360 ConfigRuleName: sagemaker-model-in-vpc

1361 Description: Checks if an Amazon SageMaker model is configured for a VPC.

1362 Source:

1363 Owner: AWS

1364 Sourceldentifier: SAGEMAKER_MODEL_IN_VPC

1365 Tags:

1366 - Key: "Stack"

1367 Value: !Ref AWS::StackName

1368 - Key: "Application"

1369 Value: !Ref Application

1370 - Key: "Stage"

1371 Value: !Ref Stage

1372

1373 SagemakerEndpointConfigurationKMSKeyConfigured:

1374 Type: AWS::Config::ConfigRule

1375 Properties:

1376 ConfigRuleName: sagemaker-endpoint-configuration-kms-key-configured

1377 Description: Checks if an AWS KMS key was configured for an Amazon SageMaker
— endpoint configuration.

1378 Source:

1379 Owner: AWS

1380 Sourceldentifier: SAGEMAKER_ENDPOINT_CONFIGURATION_KMS_KEY_CONFIGURED

1381 Tags:

1382 - Key: "Stack"

1383 Value: !Ref AWS::StackName

1384 - Key: "Application"

1385 Value: !'Ref Application

1386 - Key: "Stage"

1387 Value: !Ref Stage

1388

1389 SagemakerModelIsolationEnabled:

1390 Type: AWS::Config::ConfigRule

1391 Properties:

1392 ConfigRuleName: sagemaker-model-isolation-enabled

1393 Description: Checks if a SageMaker model is configured with network isolation.

1394 Source:

1395 Owner: AWS

1396 Sourceldentifier: SAGEMAKER_MODEL_ISOLATION_ENABLED

1397 Tags:

1398 - Key: "Stack"

1399 Value: !Ref AWS::StackName

1400 - Key: "Application"

1401 Value: !Ref Application

1402 - Key: "Stage"

1403 Value: !Ref Stage

1404

1405 SagemakerNotebookInstanceInsideVPC:

1406 Type: AWS::Config::ConfigRule

1407 Properties:

1408 ConfigRuleName: sagemaker-notebook-instance-inside-vpc

1409 Description: Checks if an Amazon SageMaker Notebook instance is launched within a
— VPC.

210

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468

CORE INFRASTRUCTURE

Source:
Owner: AWS
Sourceldentifier: SAGEMAKER_NOTEBOOK_INSTANCE_INSIDE_VPC
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

SagemakerNotebookInstanceKMSKeyConfigured:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: sagemaker-notebook-instance-kms-key-configured
Description: Checks if an AWS KMS key is configured for an Amazon SagelMaker
— notebook instance.
Source:
Owner: AWS
Sourceldentifier: SAGEMAKER_NOTEBOOK_INSTANCE_KMS_KEY_CONFIGURED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

SagemakerNotebookNoDirectInternetAccess:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: sagemaker-notebook-no-direct-internet-access
Description: Checks if direct internet access is disabled for an Amazon SageMaker
— notebook instance.
Source:
Owner: AWS
Sourceldentifier: SAGEMAKER_NOTEBOOK_NO_DIRECT_INTERNET_ACCESS
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Secrets Manager Rules
SecretsManagerRotationEnabledCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: secretsmanager-rotation-enabled-check
Description: Checks if AWS Secrets Manager secrets have rotation enabled.
Source:
Owner: AWS
Sourceldentifier: SECRETSMANAGER_ROTATION_ENABLED_CHECK
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

211

1469
1470
1471
1472
1473
1474

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

1526

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

SecretsManagerScheduledRotationSuccessCheck:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: secretsmanager-scheduled-rotation-success-check
Description: Checks if AWS Secrets Manager secrets rotated successfully according
< to the rotation schedule.
Source:
Owner: AWS
Sourceldentifier: SECRETSMANAGER_SCHEDULED_ROTATION_SUCCESS_CHECK
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

Security Hub Rules
SecurityHubEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: securityhub-enabled
Description: Checks if AWS Security Hub is enabled for an AWS account.
Source:
Owner: AWS
Sourceldentifier: SECURITYHUB_ENABLED
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

SQS Rules
SQSQueueNoPublicAccess:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: sqgs-queue-no-public-access
Description: Checks if Amazon Simple Queue Service (Amazon SQS) queues deny
— public access.
Source:
Owner: AWS
Sourceldentifier: SQS_QUEUE_NO_PUBLIC_ACCESS
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

VPC Rules
ServiceVpcEndpointEnabledRule:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: service-vpc-endpoint-enabled
Description: !Sub 'Checks whether Service ${ServiceName} VPC endpoint is enabled
— 1in all VPCs or specified VPCs'
Source:

212

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546

1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562

1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

1579
1580
1581
1582
1583
1584

CORE INFRASTRUCTURE

Owner: AWS

Sourceldentifier: SERVICE_VPC_ENDPOINT_ENABLED
InputParameters:

serviceName: !Ref ServiceName
Scope:

ComplianceResourceTypes:
- AWS::EC2::VPC
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

VPCDefaultSecurityGroupClosed:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: vpc-default-security-group-closed
Description: Checks if the default security group of any Amazon Virtual Private
— Cloud (VPC) does not allow inbound or outbound traffic.
Source:
Owner: AWS
Sourceldentifier: VPC_DEFAULT_SECURITY_GROUP_CLOSED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

VPCFlowLogsEnabled:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: vpc-flow-logs-enabled
Description: Checks if Amazon Virtual Private Cloud flow logs are found and
— enabled for Amazon VPC.
Source:
Owner: AWS
Sourceldentifier: VPC_FLOW_LOGS_ENABLED
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

VpcSgOpenOnlyToAuthorizedPortsRule:
Type: AWS::Config::ConfigRule
Properties:
ConfigRuleName: vpc-sg-open-only-to-authorized-ports
Description: 'Checks whether security groups allow unrestricted incoming traffic
— only for authorized ports'
Scope:
ComplianceResourceTypes:
- '"AWS::EC2::SecurityGroup'
Source:
Owner: AWS
Sourceldentifier: VPC_SG_OPEN_ONLY_TO_AUTHORIZED_PORTS

213

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

1585 InputParameters:

1586 authorizedTcpPorts: !Ref AuthorizedTcpPorts

1587 authorizedUdpPorts: !Ref AuthorizedUdpPorts

1588

1589 VpcSgPortRestrictionCheckRule:

1590 Type: AWS::Config::ConfigRule

1591 Properties:

1592 ConfigRuleName: vpc-sg-port-restriction-check

1593 Description: 'Checks if security groups restrict traffic to specified protocols
— and ports'

1594 Scope:

1595 ComplianceResourceTypes:

1596 - '"AWS::EC2::SecurityGroup'

1597 Source:

1598 Owner: AWS

1599 Sourceldentifier: VPC_SG_PORT_RESTRICTION_CHECK

1600 InputParameters:

1601 restrictedProtocols: !Ref RestrictedProtocols

1602 restrictedPorts: !Ref RestrictedPorts

1603 restrictedPortScope: !Ref RestrictedPortScope

1604 excludeSecurityGroups: !Ref ExcludeSecurityGroups

1605

1606 WAFV2LoggingEnabled:

1607 Type: AWS::Config::ConfigRule

1608 Properties:

1609 ConfigRuleName: wafv2-logging-enabled

1610 Description: Checks if logging is enabled on AWS WAFv2 regional and global web
— access control lists (web ACLs).

1611 Source:

1612 Owner: AWS

1613 SourceIdentifier: WAFV2_LOGGING_ENABLED

1614 Tags:

1615 - Key: "Stack"

1616 Value: !Ref AWS::StackName

1617 - Key: "Application"

1618 Value: !'Ref Application

1619 - Key: "Stage"

1620 Value: !Ref Stage

1621

1622 WAFV2RuleGroupNotEmpty:

1623 Type: AWS::Config::ConfigRule

1624 Properties:

1625 ConfigRuleName: wafv2-rulegroup-not-empty

1626 Description: Checks if AWS WAFv2 rule groups contain rules.

1627 Source:

1628 Owner: AWS

1629 Sourceldentifier: WAFV2_RULEGROUP_NOT_EMPTY

1630 Tags:

1631 - Key: "Stack"

1632 Value: !Ref AWS::StackName

1633 - Key: "Application"

1634 Value: !Ref Application

1635 - Key: "Stage"

1636 Value: !Ref Stage

1637

1638 WAFGlobalWebACLNotEmpty:

1639 Type: AWS::Config::ConfigRule

1640 Properties:

1641 ConfigRuleName: waf-global-webacl-not-empty

1642 Description: Checks if a global AWS WAF Web ACL contains any rules or rule
< groups.

214

1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

Source:
Owner: AWS
Sourceldentifier: WAF_GLOBAL_WEBACL_NOT_EMPTY
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

Detective Guardrails
CloudTrailRole:
Type: 'AWS::IAM::Role'
Properties:

RoleName: 'CloudTrailRole'
AssumeRolePolicyDocument:
Version: '2012-10-17'

Statement:
- Effect: Allow
Principal:
Service:
- cloudtrail.amazonaws.com
Action: 'sts:AssumeRole'
Tags:
- Key: "Stack"
Value: !'Ref AWS::StackName
- Key: "Application"
Value: !Ref Application
- Key: "Stage"
Value: !Ref Stage

CloudTrailPolicy:
Type: 'AWS::IAM::ManagedPolicy'
Properties:
ManagedPolicyName: 'CloudTrailPolicy'
PolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Action:
- 's3:PutObject'
- 's3:GetBucketLocation'
- 's3:ListBucket'
Resource:
- !Sub 'arn:aws:s3:::${AuditBucketName}'
- !Sub 'arn:aws:s3:::${AuditBucketNamel}/*'
- Effect: Allow
Action:
- 'kms:GenerateDataKey'
- 'kms:Decrypt'
Resource: !TmportValue AuditS3BucketKMSKey
- Effect: Allow
Action: sts:AssumeRole
Resource: !TmportValue CentralAuditRole

AttachCloudTrailPolicyToRole:
Type: 'AWS::IAM::RolePolicyAttachment'
Properties:
RoleName: !Ref CloudTrailRole
PolicyArn: !Ref CloudTrailPolicy

CORE INFRASTRUCTURE

215

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

1704

1705 MemberAccountCloudTrail:

1706 Type: AWS::CloudTrail::Trail

1707 Properties:

1708 TrailName: OmniawareAuditTrail

1709 IsLogging: true

1710 # Send logs to the central S3 bucket in the audit account
1711 S3BucketName: AuditBucketName

1712 # Reference the audit account ID where the bucket resides
1713 S3KeyPrefix: 'awslogs/${AWS::AccountId}’
1714 # Enable management event logging

1715 EnableLogFileValidation: true

1716 IncludeGlobalServiceEvents: true

1717 IsMultiRegionTrail: true

1718 # Event selectors for management events
1719 EventSelectors:

1720 - ReadWriteType: All

1721 IncludeManagementEvents: true

1722 # Advanced event selectors for network activity events
1723 AdvancedEventSelectors:

1724 - Name: Log network activity events for specified services
1725 FieldSelectors:

1726 - Field: eventCategory

1727 Equals:

1728 - NetworkActivity

1729 - Field: eventSource

1730 Equals:

1731 - cloudtrail.amazonaws.com

1732 - kms.amazonaws.com

1733 - secretsmanager.amazonaws.com
1734 CloudWatchLogsRoleArn: !GetAtt CloudTrailRole.Arn
1735 Tags:

1736 - Key: "Stack"

1737 Value: !Ref AWS::StackName

1738 - Key: "Application"

1739 Value: !'Ref Application

1740 - Key: "Stage"

1741 Value: !Ref Stage

1742

1743 MemberAccountGuardDuty:

1744 Type: AWS::GuardDuty::Detector

1745 Properties:

1746 Enable: true

1747 FindingPublishingFrequency: FIFTEEN_MINUTES
1748 DataSources:

1749 CloudTrail:

1750 Enable: true

1751

1752 # IAM Role for GuardDuty to write to the central S3 bucket
1753 GuardDutyS3WriterRole:

1754 Type: AWS::IAM::Role

1755 Properties:

1756 RoleName: GuardDutyS3WriterRole

1757 AssumeRolePolicyDocument:

1758 Version: '2012-10-17'

1759 Statement:

1760 - Effect: Allow

1761 Principal:

1762 Service: guardduty.amazonaws.com
1763 Action: sts:AssumeRole

1764 ManagedPolicyArns:

216

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812

- !'Ref GuardDutyS3BucketAccessPolicy
Tags:
- Key: "Stack"
Value: !Ref AWS::StackName
- Key: "Application"
Value: !'Ref Application
- Key: "Stage"
Value: !Ref Stage

Managed policy for GuardDuty S3 bucket access
GuardDutyS3BucketAccessPolicy:

Type: AWS::IAM::ManagedPolicy

Properties:

PolicyDocument:
Version: '2012-10-17'
Statement:
- Effect: Allow
Action:
- s3:GetBucketLocation
- s3:PutObject
- s3:ListBucket
Resource:
- !Sub 'arn:aws:s3:::${AuditBucketName}'

- Effect: Allow
Action: sts:AssumeRole
Resource: !ImportValue CentralAuditRole

Create a publishing destination configuration
GuardDutyPublishingDestination:
Type: AWS::GuardDuty::PublishingDestination
Properties:
DetectorId: !Ref MemberAccountGuardDuty
DestinationType: S3
DestinationProperties:
DestinationArn: !Sub

KmsKeyArn: !ImportValue AuditS3BucketKMSKey

Enable Security Hub in member account
MemberAccountSecurityHub:
Type: AWS::SecurityHub::Hub
Properties:
Enable security standards
EnableDefaultStandards: true
Tags:
Environment: Member
Purpose: SecurityMonitoring

— ‘'arn:aws:s3:::${AuditBucketName}/GuardDuty/${AWS

CORE INFRASTRUCTURE

Description: Policy for GuardDuty to access the central audit S3 bucket

- !'Sub 'arn:aws:s3:::${AuditBucketNamel}/GuardDuty/${AWS: :AccountId}/*"'

::AccountId}/*"'

10 11

10 The implementation of this module was based on code contributions by colleagues in the OmniAware

project and has been integrated with their explicit permission.

11 Certain elements in the code listing have been anonymised or generalised to preserve confidentiality and

align with disclosure requirements.

217

O 0 N G W N

[Sy
W N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43

45
46
47

48

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

Secure Infrastructure Deployment

10_cc-secure-infra-attestation.yaml

CloudFormation stack defining the core Confidential Computing infrastructure for the Omni-
Aware PoC. Includes all components required for SEV-SNP, Nitro Enclaves, Vault and Remote
Attestation within a NATO-aligned DevSecOps deployment.

A

Project: OmniAware - Next-Gen Defence Platform

Component : Confidential Computing Infrastructure & Remote Attestation

Stack Name: 10_cc-secure-infra-attestation.yaml

Description: Deploys the secure baseline infrastructure for AMD SEV-SNP,
Nitro Enclaves and HashiCorp Vault incl. Transit Engine,
designed for automated Proof of Concept deployments (Dev-Mode)

Author: Valentin Pfeil

Institution: University of the Bundeswehr Munich (M.Sc. Computer Science)

Supervision: Prof. Dr. Wolfgang Hommel / Dr. Karl Fuerlinger

Date: 2025-06-15

License: Research Use Only / Academic Distribution, Subject to Future
Publication

Format: AWS CloudFormation (YAML)

Tags: Confidential Computing, Vault, SEV-SNP, Nitro Enclaves,

Remote Attestation, DevSecOps, Defence Infrastructure
Notes:

- Designed for deployment in AWS eu-west-1 (Ireland)
- Includes full stack: VPC, IAM, KMS, Vault, SEV-SNP, Enclaves
- Prepared for SSM-based debugging, Cloud-Native bootstrap and secure tagging

Documentation:

############£ HOoH ¥ O H O O H R O H R

- Master Thesis Chapter 4.2: Confidential Computing
R

Main Template for the secure infrastructure stack
Unformal Ingredients: VPC, Subnets, SGs, SEV/Nitro EC2

AWSTemplateFormatVersion: "2010-09-09"
Description: "Remote Attestation Infrastructure (PoC) - AMD SEV-SNP + Nitro Enclaves +
— HashiCorp Vault"

Parameters:
ProjectName:
Type: "String"
Default: "omniaware-cc"
Description: "Project name for resource naming"
Environment:
Type: "String"
Default: "dev"
Description: "Environment name"

Mappings:
RegionMap:
eu-west-1:
UbuntuAMI: "ami-01£23391a59163da9" # Ubuntu 24.04 LTS, AMI Catalog,
< Quick Start AMI
AmazonLinuxAMI: "ami-015ble8e2a6899bdb" # Amazon Linux 2023 (Nitro

— Enclaves-ready)

218

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

Resources:

#
VPC Infrastructure, 1 /16 VPC, 1 Public Subnet, 1 Private Subnet
#

VPC:
Type: "AWS::EC2::VPC"
Properties:

CidrBlock: "10.0.0.0/16"
EnableDnsHostnames: true
EnableDnsSupport: true
Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-vpc"

Public Subnet for NAT Gateway
PublicSubnet:
Type: "AWS::EC2::Subnet"
Properties:
Vpcld: !'Ref VPC
CidrBlock: "10.0.1.0/24"
AvailabilityZone: !Select [0, !GetAZs ""]
MapPublicIpOnLaunch: true
Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-public-subnet"

Private Subnet for EC2 Instanzen
PrivateSubnet:
Type: "AWS::EC2::Subnet"
Properties:
Vpcld: !'Ref VPC
CidrBlock: "10.0.2.0/24"
AvailabilityZone: !Select [0, !GetAZs ""]
Tags:
- Key: "Name"
Value: !Sub "${ProjectNamel}-${Environment}-private-subnet"

Internet Gateway for Outbound-Traffic (incl. NAT Gateway)
The Internet Gateway allows instances in the public subnet to access the internet
and is attached to the VPC. It is used by the NAT Gateway to route outbound traffic
from private instances to the internet.
InternetGateway:

Type: "AWS::EC2::InternetGateway"

Properties:

Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-igu"

AttachGateway:
Type: "AWS::EC2::VPCGatewayAttachment"
Properties:
Vpcld: !'Ref VPC
InternetGatewayld: !Ref InternetGateway

NAT Gateway for Outbound Internet (incl. Internet Gateway)

NAT Gateway needs one Elastic IP (EIP) to function properly

This EIP is created in the same region as the VPC

The NAT Gateway is used to allow private instances to access the internet for
— updates and other outbound traffic

without exposing them to the public internet directly

219

109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129

130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

The NAT Gateway is created in the public subnet to allow it to route traffic
— through the Internet Gateway
NATGatewayEIP:
Type: "AWS::EC2::EIP"
DependsOn: AttachGateway
Properties:
Domain: vpc

NATGateway:
Type: "AWS::EC2::NatGateway"
Properties:
AllocationId: !GetAtt NATGatewayEIP.AllocationId
SubnetId: !Ref PublicSubnet
Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-nat"

Route Tables
Public Route Table for Internet Gateway
Private Route Table for NAT Gateway
The public route table is associated with the public subnet and routes all outbound
— traffic to the Internet Gateway
The private route table is associated with the private subnet and routes all
— outbound traffic to the NAT Gateway
This allows instances in the private subnet to access the internet for updates and
— other outbound traffic
without exposing them to the public internet directly
PublicRouteTable:
Type: "AWS::EC2::RouteTable"
Properties:
VpclId: !'Ref VPC
Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-public-rt"

PrivateRouteTable:
Type: "AWS::EC2::RouteTable"
Properties:
Vpcld: !'Ref VPC
Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-private-rt"

PublicRoute:
Type: "AWS::EC2::Route"
DependsOn: AttachGateway
Properties:
RouteTableId: !Ref PublicRouteTable
DestinationCidrBlock: "0.0.0.0/0"
GatewayId: !Ref InternetGateway

PrivateRoute:
Type: "AWS::EC2::Route"
Properties:
RouteTableId: !Ref PrivateRouteTable
DestinationCidrBlock: "0.0.0.0/0"
NatGatewayId: !Ref NATGateway

PublicSubnetRouteTableAssociation:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Properties:

220

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183

184
185
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

SubnetId: !Ref PublicSubnet
RouteTableId: !Ref PublicRouteTable

PrivateSubnetRouteTableAssociation:
Type: "AWS::EC2::SubnetRouteTableAssociation"
Properties:
SubnetId: !Ref PrivateSubnet
RouteTableId: !Ref PrivateRouteTable

KMS Key for Test Secrets

KMS Key for Remote Attestation Test Secrets

This KMS key is used to encrypt and decrypt test secrets for remote attestation
It is created with a key policy that allows the EC2 service to use it for

— decryption and data key generation

The key policy also allows the root user of the AWS account to manage the key

The key alias is created to provide a friendly name for the key

The key alias is used in the EC2 role policy to allow access to the key for

— attestation purposes

The key is used by the HashiCorp Vault server to encrypt and decrypt secrets

H O O OB R

The key is also used by the EC2 instances to encrypt and decrypt attestation data
The key is created in the same region as the VPC and is used by the EC2 instances

< in the private subnet
AttestationKMSKey:
Type: "AWS::KMS::Key"
Properties:
Description: "KMS Key for Remote Attestation Test Secrets"
KeyPolicy:
Version: "2012-10-17"
Statement:
- Sid: "Enable IAM User Permissions"
Effect: "Allow"
Principal:
AWS: !Sub "arn:aws:iam::${AWS::AccountId}:root"
Action: "kms:*"
Resource: "x"
- Sid: "Allow EC2 Service"
Effect: "Allow"
Principal:
Service: "ec2.amazonaws.com"
Action:
- "kms:Decrypt"
- "kms:GenerateDataKey"
- "kms:CreateGrant"
Resource: "x"

AttestationKMSKeyAlias:
Type: "AWS::KMS::Alias"
Properties:
AliasName: !Sub "alias/${ProjectName}-${Environment}-attestation"
TargetKeyId: !Ref AttestationKMSKey

#
IAM Roles for Session Manager
#
IAM Role for EC2 Instances to allow Session Manager access

This role allows EC2 instances to be managed via AWS Systems Manager Session
— Manager

It includes the AmazonSSMManagedInstanceCore managed policy which provides the
< necessary permissions

221

222
223

224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

253
254
255
256
257
258
259
260
261
262
263

264
265

266

267
268

269
270
271
272
273
274

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

to communicate with the Systems Manager service
The role is assumed by EC2 instances in the private subnet to allow them to be
— managed without direct SSH access
The role is created with a trust policy that allows the EC2 service to assume the
— role
EC2Role:
Type: "AWS::IAM::Role"
Properties:
RoleName: !Sub "${ProjectName}-${Environment}-ec2-role"
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Principal:
Service: "ec2.amazonaws.com"
Action: "sts:AssumeRole"

ManagedPolicyArns:
- "arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore"
Policies:
- PolicyName: "AttestationPermissions"
PolicyDocument:
Version: "2012-10-17"
Statement:
- Effect: "Allow"
Action:

- "kms:Decrypt"
- "kms:GenerateDataKey"
- "kms:CreateGrant"
Resource: !GetAtt AttestationKMSKey.Arn
- Effect: "Allow"
Action:
- "ec2:CreateTags"
Resource: !Sub
— "arn:aws:ec2:${AWS::Region}:${AWS: :AccountId}:instance/*" # Allows
— tagging of EC2 instances

EC2InstanceProfile:
Type: "AWS::IAM::InstanceProfile"
Properties:
Roles:

- !Ref EC2Role

#
Security Groups
#
Security Group for Internal Communication between Attestation Components
This security group allows internal communication between the EC2 instances and the
— Vault server
It allows inbound traffic on the SSH port (22) for management access
It allows inbound traffic on the Vault API port (8200) for communication with the
— Vault server
It allows inbound traffic on the attestation service ports (9000-9100) for
— communication between attestation components
It allows outbound traffic to the internet for updates and other outbound traffic
The security group is created in the same VPC as the EC2 instances and the Vault
— server
InternalSecurityGroup:
Type: "AWS::EC2::SecurityGroup"
Properties:
GroupName: !Sub "${ProjectName}-${Environment}-internal-sg"
GroupDescription: "Internal communication between attestation components"
VpcId: !Ref VPC

222

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330
331
332
333
334

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

SecurityGroupEgress:
Outbound Internet for Updates
- IpProtocol: "-1"
CidrIp: "0.0.0.0/0"
Description: "Outbound Internet"
Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-internal-sg"

Self-referencing rules needs to be created after the security group is created
InternalSSHRule:
Type: "AWS::EC2::SecurityGroupIngress"
Properties:
GroupId: !Ref InternalSecurityGroup
IpProtocol: tcp
FromPort: 22
ToPort: 22
SourceSecurityGroupId: !Ref InternalSecurityGroup
Description: "Internal SSH"

InternalVaultRule:
Type: "AWS::EC2::SecurityGroupIngress"
Properties:

GroupId: !Ref InternalSecurityGroup

IpProtocol: tcp

FromPort: 8200

ToPort: 8200

SourceSecurityGroupld: !Ref InternalSecurityGroup
Description: "Vault API"

InternalAttestationRule:

Type: "AWS::EC2::SecurityGroupIngress"

Properties:
Groupld: !Ref InternalSecurityGroup
IpProtocol: tcp
FromPort: 9000
ToPort: 9100
SourceSecurityGroupId: !Ref InternalSecurityGroup
Description: "Attestation Services"

EC2 Key Pair

EC2 Key Pair for SSH Access

This key pair is used to access the EC2 instances via SSH

It is created with a key name that includes the project name and environment
The key pair is created in the same region as the VPC and is used by the EC2
< instances in the private subnet

H O B O OB OB H

EC2KeyPair:
Type: "AWS::EC2::KeyPair"
Properties:
KeyName: !Sub "${ProjectName}-${Environment}-keypair"
KeyType: '"rsa"

KeyFormat: "pem"

#
EC2 Instances
#
AMD SEV-SNP Instance

This instance is used for remote attestation using AMD SEV-SNP technology

223

335
336

337

338

339
340

341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

389

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

It is created with an instance type that supports SEV-SNP (c6a.large)

The instance is created in the private subnet and is associated with the internal
< security group

The instance is configured with user data to install the necessary tools for

— SEV-SNP attestation

The instance is also configured with a user data script to install the SEV-SNP

— attestation tools

The instance is created with a key pair for SSH access

The instance is created with an IAM instance profile that allows it to access the
— KMS key for attestation

The instance is tagged with the project name, environment and role for easy

— identification

Amazon Linux 2023 - 1st AMD SEV-SNP Instance
SEVSNPLaunchTemplate:
Type: "AWS::EC2::LaunchTemplate"
Properties:
LaunchTemplateData:
InstanceType: '"c6a.large"
Imageld: !FindInMap [RegionMap, !Ref "AWS::Region", AmazonLinuxAMI]
IamInstanceProfile:
Name: !Ref EC2InstanceProfile
KeyName: !Ref EC2KeyPair
SecurityGrouplds:
- !'Ref InternalSecurityGroup
CpuOptions:
AmdSevSnp: "enabled"
UserData:
Fn::Base64: !Sub |
#!/bin/bash
set -e

Set hostname
hostnamectl set-hostname OmniAware-EC2-SEV-SNP
echo '127.0.0.1 OmniAware-EC2-SEV-SNP' >> /etc/hosts

Install development tools and dependencies

dnf groupinstall -y "Development Tools"

dnf install -y cmake git wget jq openssl-devel \
protobuf-compiler libtool autoconf automake \
kernel-headers kernel-devel awscli

rust

Install Rust (if not available globally)

rm -rf ~/.cargo ~/.rustup

curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh -s -- -y
source $HOME/.cargo/env

rustup install stable

rustup default stable

Fetch IMDSv2 token
TOKEN=$ (curl -X PUT "http://169.254.169.254/latest/api/token" \
-H "X-aws-ec2-metadata-token-ttl-seconds: 21600")

Retrieve instance metadata

INSTANCE_ID=$(curl -s -H "X-aws-ec2-metadata-token: $TOKEN" \
http://169.254.169.254/1latest/meta-data/instance-id)

REGION=$(curl -s -H "X-aws-ec2-metadata-token: $TOKEN" \
http://169.254.169.254/1latest/dynamic/instance-identity/document | jq -r
— .region)

224

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

422
423

424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

Tag EC2 instance with hostname

aws ec2 create-tags --resources "$INSTANCE_ID" \
--tags Key=Hostname,Value=OmniAware-EC2-SEV-SNP \
--region "$REGION"

Set prompt for SSM
echo 'export PS1="\u@\h:\w$ "' >> /etc/profile.d/ssm_prompt.sh
chmod +x /etc/profile.d/ssm_prompt.sh

Install snpguest

cd /opt

git clone https://github.com/virtee/snpguest.git
cd snpguest

cargo build --release

cp target/release/snpguest /usr/local/bin/

Install sevctl

cd /opt

git clone https://github.com/virtee/sevctl.git
cd sevctl

cargo build --release

cp target/release/sevctl /usr/local/bin/

Optional: verify tools

snpguest --help || echo "[x] snpguest not properly installed"
sevctl --help || echo "[x] sevctl not installed"

sevctl ok || echo "[x] SEVCTL OK check failed"

Vault CLI installation

apt-get update -y

apt-get install -y gnupg software-properties-common curl unzip

curl -fsSL https://apt.releases.hashicorp.com/gpg | gpg --dearmor -o
— /usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg]l
— https://apt.releases.hashicorp.com $(lsb_release -cs) main" | tee
— /etc/apt/sources.list.d/hashicorp.list

Vault Dependencies
apt-get install -y python3-pip
apt-get install -y python3-full

Set environment variable for Vault address
echo 'export VAULT_ADDR="http://<!Ref VaultInstancePrivateIP>"' >>
— ~/.bashrc
SEVSNPInstance:
Type: "AWS::EC2::Instance"
Properties:
SubnetId: !Ref PrivateSubnet
LaunchTemplate:
LaunchTemplatelId: !Ref SEVSNPLaunchTemplate
Version: !GetAtt SEVSNPLaunchTemplate.LatestVersionNumber

Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-sev-snp"
- Key: "Role"

Value: "SEV-SNP-Attester"

Ubuntu 24.04 LTS - 2nd AMD SEV-SNP Instance
SEVSNPUbuntuLaunchTemplate:

225

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

484
485
486
487
488

489
490
491

492
493
494
495
496
497
498
499
500

502
503
504

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

226

Type: "AWS::EC2::LaunchTemplate"
Properties:
LaunchTemplateData:
InstanceType: "c6a.large"
ImageId: !FindInMap [RegionMap, !'Ref "AWS::Region", UbuntuAMI]
IamInstanceProfile:

Name: !Ref EC2InstanceProfile
KeyName: !Ref EC2KeyPair
SecurityGrouplds:

- !'Ref InternalSecurityGroup
CpuOptions:

AmdSevSnp: "enabled"
UserData:

Fn::Base64: !Sub |

#!/bin/bash
set -e

Set hostname - Done
hostnamectl set-hostname OmniAware-EC2-SEV-SNP-Ubuntu
echo '127.0.0.1 OmniAware-EC2-SEV-SNP-Ubuntu' >> /etc/hosts

Install tools & dependencies - Done

snap install aws-cli --classic

apt-get update && apt-get install -y \
jq curl wget git cmake build-essential net-tools \
linux-headers-$(uname -r) libssl-dev pkg-config \
autoconf automake libtool protobuf-compiler libprotobuf-dev

Retrieve IMDSv2-Token, EC2 Metadata - Done
TOKEN=$(curl -X PUT "http://169.254.169.254/latest/api/token" \
-H "X-aws-ec2-metadata-token-ttl-seconds: 21600")

INSTANCE_ID=$(curl -s -H "X-aws-ec2-metadata-token: $TOKEN" \
http://169.254.169.254/1latest/meta-data/instance-id)

REGION=$(curl -s -H "X-aws-ec2-metadata-token: $TOKEN" \
http://169.254.169.254/1latest/dynamic/instance-identity/document | jq -r
— .region)

Tag the instance - Done

aws ec2 create-tags --region "$REGION" \
--resources "$INSTANCE_ID" \
--tags Key=Hostname,Value=OmniAware-EC2-SEV-SNP-Ubuntu || echo "[x]
— Tagging failed"

Configure SSM prompt; Bash-Var for Prompt-Style

This sets the prompt for SSM sessions to show user, host and current
— directory

echo 'export PS1="\u@\h:\w$ "' >> /etc/profile.d/ssm_prompt.sh

chmod +x /etc/profile.d/ssm_prompt.sh

Install Rust using rustup - Done
curl --proto 'shttps' --tlsvl.2 -sSf https://sh.rustup.rs | sh -s -- -y
source $HOME/.cargo/env

Ensure Rust is available globally
rustup install stable

rustup default stable

Here, we install the necessary tools for SEV-SNP attestation

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

529
530

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

552

553

554
555

556

557

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

Machines crash irregularly while installing snpguest and sevctl
Install snpguest

cd /opt

git clone https://github.com/virtee/snpguest.git

cd snpguest

cargo build --release

cp target/release/snpguest /usr/local/bin

Install sevctl

cd /opt

git clone https://github.com/virtee/sevctl.git
cd sevctl

cargo build --release

cp target/release/sevctl /usr/local/bin

Optional: verify tools

snpguest --help || echo "~~e2~"9d~"~8c snpguest not properly installed"
sevctl --help || echo "~~e2°"9d~~8c sevctl not installed"

sevctl ok || echo "~"e27"9d~"8c SEVCTL OK check failed"

Vault CLI installation

apt-get update -y

apt-get install -y gnupg software-properties-common curl unzip

curl -fsSL https://apt.releases.hashicorp.com/gpg | gpg --dearmor -o
< /usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg]l
< https://apt.releases.hashicorp.com $(1lsb_release -cs) main" | tee
— /etc/apt/sources.list.d/hashicorp.list

Vault Dependencies
apt-get install -y python3-pip
apt-get install -y python3-full
SEVSNPInstance2:
Type: "AWS::EC2::Instance"
Properties:
SubnetId: !Ref PrivateSubnet
LaunchTemplate:
LaunchTemplateld: !Ref SEVSNPUbuntuLaunchTemplate
Version: !GetAtt SEVSNPUbuntuLaunchTemplate.LatestVersionNumber

Tags:
- Key: "Name"
Value: !Sub "${ProjectNamel}-${Environment}-sev-snp-ubuntu"
- Key: "Role"

Value: "SEV-SNP-Ubuntu-Attester"

Nitro Enclave Instance

This instance is used for remote attestation using Nitro Enclaves technology

It is created with an instance type that supports Nitro Enclaves (c5.xlarge)

The instance is created in the private subnet and is associated with the internal
— security group

The instance is configured with user data to install the necessary tools for Nitro
— Enclaves attestation

The instance is also configured with a user data script to install the Nitro

— Enclaves CLI and configure the enclave options

The instance is created with a key pair for SSH access

The instance is created with an IAM instance profile that allows it to access the
— KMS key for attestation

The instance is tagged with the project name, environment and role for easy

— identification

NitroEnclavelnstance:

227

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

228

Type: "AWS::EC2::Instance"
Properties:

InstanceType: "cb.2xlarge" # Nitro Enclaves ben~"c3""b6tigen mindestens .xlarge!

Imageld: !FindInMap [RegionMap, !Ref "AWS::Region", AmazonLinuxAMI]
KeyName: !Ref EC2KeyPair
SubnetId: !Ref PrivateSubnet
SecurityGrouplds:
- !Ref InternalSecurityGroup
IamInstanceProfile: !Ref EC2InstanceProfile

EnclaveOptions:
Enabled: true
UserData:

Fn::Base64: !Sub |
#!/bin/bash
set -e

Set persistent hostname
hostnamectl set-hostname OmniAware-EC2-Nitro-Enclave
echo '127.0.0.1 OmniAware-EC2-Nitro-Enclave' >> /etc/hosts

Install dev tools

dnf groupinstall -y "Development Tools"

dnf install -y cmake openssl-devel git wget
dnf remove curl-minimal -y

dnf install curl -y

dnf install git -y

Tag EC2 instance with its hostname

dnf install -y awscli jq

Fetch IMDSv2 token
TOKEN=$ (curl -X PUT "http://169.254.169.254/latest/api/token" \
-H "X-aws-ec2-metadata-token-ttl-seconds: 21600")

Retrieve instance metadata

INSTANCE_ID=$(curl -s -H "X-aws-ec2-metadata-token: $TOKEN" \
http://169.254.169.254/1latest/meta-data/instance-id)

REGION=$(curl -s -H "X-aws-ec2-metadata-token: $TOKEN" \

http://169.254.169.254/1latest/dynamic/instance-identity/document | jq -r

< .region)

Tag EC2 instance with hostname

aws ec2 create-tags --resources "$INSTANCE_ID" \
--tags Key=Hostname,Value=0mniAware-EC2-SEV-SNP \
--region "$REGION"

Set prompt for SSM
echo 'export PS1="\u@\h:\w$ "' >> /etc/profile.d/ssm_prompt.sh
chmod +x /etc/profile.d/ssm_prompt.sh

Set prompt for SSM sessions
echo 'export PS1="\u@\h:\w$ "' >> /etc/profile.d/ssm_prompt.sh
chmod +x /etc/profile.d/ssm_prompt.sh

Install Nitro Enclaves CLI and dependencies

dnf install -y aws-nitro-enclaves-cli aws-nitro-enclaves-cli-devel
Enable Nitro Enclaves for ec2-user

usermod -aG ne ec2-user

Configuration of Nitro Enclaves Allocator and Enclaves
Create allocator config - Not needed for Nitro Enclaves, default is
— sufficient

617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

650
651
652
653
654
655
656
657
658
659
660

661

662

663

664

665

666

667
668

669
670

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

mkdir -p /etc/nitro_enclaves
echo "memory_mib: 1024" > /etc/nitro_enclaves/allocator.yaml
echo "cpu_count: 2" >> /etc/nitro_enclaves/allocator.yaml

Enable and start Nitro Enclaves allocator
systemctl start nitro-enclaves-allocator.service
systemctl enable nitro-enclaves-allocator.service

Install Docker
systemctl enable docker
systemctl start docker

Create Enclave Image

docker build /usr/share/nitro_enclaves/examples/hello -t hello

docker image ls

nitro-cli build-enclave --docker-uri hello:latest --output-file hello.eif

Start Enclave
ENCLAVE_ID=$(nitro-cli run-enclave \

--eif-path example.eif \

--memory 1024 \

--cpu-count 2 \

--debug-mode \

--enclave-cid 16 \

| jg -r '.EnclaveID')

Output Enclave ID
echo "Enclave started with ID: $ENCLAVE_ID"

Check Enclave-Status
nitro-cli describe-enclaves

Get Attestation Document - Not possible, because Nitro SDK is not
< implemented
nitro-cli get-attestation-document --enclave-id "$ENCLAVE_ID"

Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-nitro-enclave"
- Key: "Role"
Value: "Nitro-Enclave-Attester"
#
Outputs
#

These outputs provide information about the created resources

They can be used to reference the resources in other stacks or for management

< purposes

The outputs include VPC ID, Subnet IDs, Instance IDs, KMS Key ID and EC2 Key Pair
— Name

The outputs are also exported for use in other stacks

The outputs include commands to connect to the instances via Session Manager

The commands can be used to connect to the AMD SEV-SNP instance, Nitro Enclave
— instance and Vault instance

The outputs are tagged with the project name and environment for easy

— identification

The outputs are exported with a name that includes the stack name for easy

— reference

The outputs can be used in other stacks or for management purposes

The outputs include the ARN of the IAM role and instance profile created for the
— Vault instance

The outputs also include the security group ID for the Vault instance

AWS::StackName is own stack name, used for exporting outputs

229

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

671

672 Outputs:

673 VPCId:

674 Description: "VPC ID"

675 Value: !Ref VPC

676 Export:

677 Name: !Sub "${AWS::StackNamel}-VPC-ID"

678

679 PrivateSubnetId:

680 Description: "Private Subnet ID"

681 Value: !Ref PrivateSubnet

682 Export:

683 Name: !Sub "${AWS::StackName}-PrivateSubnet-ID"

684

685 InternalSecurityGroupld:

686 Description: "Security Group ID for internal Vault communication"
687 Value: !Ref InternalSecurityGroup

688 Export:

689 Name: !Sub "${AWS::StackName}-Internal-Security-Group-ID"
690

691 SEVSNPInstanceld:

692 Description: "AMD SEV-SNP Instance ID"

693 Value: !'Ref SEVSNPInstance

694 Export:

695 Name: !Sub "${AWS::StackNamel}-SEV-SNP-Instance-ID"
696

697 SEVSNPInstanceId2:

698 Description: "AMD SEV-SNP Instance ID"

699 Value: !Ref SEVSNPInstance2

700 Export:

701 Name: !Sub "${AWS::StackNamel}-SEV-SNP-Instance-ID2"
702

703 NitroEnclaveInstanceld:

704 Description: "Nitro Enclave Instance ID"

705 Value: !Ref NitroEnclavelnstance

706 Export:

707 Name: !Sub "${AWS::StackName}-Nitro-Enclave-Instance-ID"
708

709 KMSKeyId:

710 Description: "KMS Key ID for Attestation"

711 Value: !Ref AttestationKMSKey

712 Export:

713 Name: !Sub "${AWS::StackName}-KMS-Key-ID"

714

715 EC2KeyPairName:

716 Description: "EC2 Key Pair Name"

717 Value: !Ref EC2KeyPair

718 Export:

719 Name: !Sub "${AWS::StackName}-KeyPair-Name"

720

721 EC2InstanceProfileName:

722 Description: "EC2 Instance Profile Name"

723 Value: !Ref EC2InstanceProfile

724 Export:

725 Name: !Sub "${AWS::StackName}-InstanceProfile-Name"
726

727 SessionManagerConnectCommands :

728 Description: "Commands to connect via Session Manager"
729 Value: !Sub |

730 # AMD SEV-SNP Instance:

731 aws ssm start-session --target ${SEVSNPInstance} --region ${AWS::Region}

230

732
733
734
735
736
737

O 0 N O Ul W N

== =
N = o

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

AMD SEV-SNP-Ubuntu Instance:
aws ssm start-session --target ${SEVSNPInstance2} --region ${AWS::Region}

Nitro Enclave Instance:
aws ssm start-session --target ${NitroEnclaveInstance} --region ${AWS::Region}

12

Vault Deployment

15_cc-vault-poc.yaml

CloudFormation template for deploying a standalone Vault PoC instance. Includes config-
uration for JWT authentication, Transit Secret Engine and policy enforcement to support
SEV-SNP and Nitro Enclave attestation workflows.

RS R R SR R R R R SRR

Project: OmniAware - Next-Gen Defence Platform

Component: Vault Key Management & Attestation Token Handling

Stack Name: 15_cc-vault-poc.yaml

Description: Deploys the HashiCorp Vault Proof of Concept environment

including JWT validation, Transit Secret Engine and policies
to support remote attestation workflows.

Author: Valentin Pfeil

Institution: University of the Bundeswehr Munich (M.Sc. Computer Science)
Supervision: Prof. Dr. Wolfgang Hommel / Dr. Karl Fuerlinger

Date: 2025-06-15

License: Research Use Only / Academic Distribution, Subject to Future
— Publication

Format: AWS CloudFormation (YAML)

HHHHH R R R R R R R R R R R R R R R R R R

AWSTemplateFormatVersion: "2010-09-09"
Description: "Vault Deployment PoC Stack - Integrates with Confidential Infrastructure
provisioned by '10_cc-secure-infra-attestation.yaml' (via exported outputs)"

Parameters:

InfraStackName:

Type: "String"

Default: "OmniAware-CC-SECURE-INFRA-ATTESTATION-Stack"
ProjectName:

Type: "String"

Default: "omniaware-cc"

Description: "Project name for resource naming"
Environment:

Type: "String"

Default: "dev"

Description: "Environment name"

Mappings:
RegionMap:
eu-west-1:
UbuntuAMI: "ami-01£23391a59163da9"

Resources:
VaultInstance:
Type: AWS::EC2::Instance
Properties:

12 This infrastructure template enables enclave-based remote attestation using AMD SEV-SNP and AWS Nitro

Enclaves. It was designed and validated in a controlled PoC environment.

231

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

232

InstanceType: t3.micro
ImageId: !'FindInMap [RegionMap, !'Ref "AWS::Region", UbuntuAMI]
KeyName :
!ImportValue
Fn::Sub: "${InfraStackName}-KeyPair-Name"
SubnetId:
!ImportValue
Fn::Sub: "${InfraStackName}-PrivateSubnet-ID"
SecurityGroupIds:
- !ImportValue
Fn::Sub: "${InfraStackName}-Internal-Security-Group-ID"
IamInstanceProfile:
!ImportValue
Fn::Sub: "${InfraStackNamel}-InstanceProfile-Name"
UserData:
Fn::Base64: !Sub |
#!/bin/bash
set -e

hostnamectl set-hostname OmniAware-EC2-Vault
echo '127.0.0.1 OmniAware-EC2-Vault' >> /etc/hosts

snap install aws-cli --classic

apt-get update && apt-get install -y jq curl wget git cmake build-essential \
linux-headers-$(uname -r) libssl-dev pkg-config autoconf automake libtool \
protobuf-compiler libprotobuf-dev gnupg software-properties-common unzip

curl -fsSL https://apt.releases.hashicorp.com/gpg | gpg --dearmor -o

— /usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg]
— https://apt.releases.hashicorp.com $(1lsb_release -cs) main" | tee
— /etc/apt/sources.list.d/hashicorp.list

apt-get update && apt-get install -y vault net-tools

useradd --system --home /etc/vault.d --shell /usr/sbin/nologin vault
mkdir -p /opt/vault/data /etc/vault.d
chown -R vault:vault /opt/vault /etc/vault.d

Write Vault Config
cat <<VAULTCFGEOF > /etc/vault.d/vault.hcl
storage "file" {
path = "/opt/vault/data"
}

listener "tcp" {
address
tls_disable

"0.0.0.0:8200"
true

}

api_addr = "http://127.0.0.1:8200"
cluster_addr = "https://127.0.0.1:8201"
ui = true

VAULTCFGEQF

Write Systemd Unit File

cat <<VAULTUNITEOF > /etc/systemd/system/vault.service
[Unit]

Description=HashiCorp Vault - A tool for managing secrets
Documentation=https://www.vaultproject.io/docs/
Requires=network-online.target
After=network-online.target

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

ConditionFileNotEmpty=/etc/vault.d/vault.hcl

[Service]

User=vault

Group=vault

ExecStart=/usr/bin/vault server -config=/etc/vault.d/vault.hcl
Restart=on-failure

[Install]
WantedBy=multi-user.target
VAULTUNITEQF

systemctl daemon-reload
systemctl enable vault
systemctl start vault
sleep 10

export VAULT_ADDR="http://127.0.0.1:8200"

vault operator init -key-shares=1 -key-threshold=1 >

— /home/ubuntu/vault-keys.txt

UNSEAL_KEY=$(grep 'Unseal Key 1' /home/ubuntu/vault-keys.txt | awk '{print
— $NF}')

ROOT_TOKEN=$(grep 'Initial Root Token' /home/ubuntu/vault-keys.txt | awk
— '{print $NF}')

vault operator unseal "$UNSEAL_KEY"

vault login "$ROOT_TOKEN"

vault secrets enable transit

vault write -f transit/keys/attestation-test

Create Transit Key for Attestation

cat <<POLICY > /tmp/attestation-policy.hcl

path "transit/encrypt/attestation-test" {
capabilities = ["update"]

}

path "transit/decrypt/attestation-test" {
capabilities = ["update"]

}

path "transit/keys/attestation-test" {
capabilities = ["read"]

}

POLICY

vault policy write attestation-policy /tmp/attestation-policy.hcl

echo "export VAULT_ADDR=http://127.0.0.1:8200" >> /home/ubuntu/.bashrc
echo "export VAULT_TOKEN=$ROOT_TOKEN" >> /home/ubuntu/.bashrc

chown ubuntu:ubuntu /home/ubuntu/vault-keys.txt

chmod 600 /home/ubuntu/vault-keys.txt

JWT Validation Setup
vault auth enable jwt

Structure Setup
mkdir -p /etc/vault.d/jwt

Tags:
- Key: "Name"
Value: !Sub "${ProjectName}-${Environment}-vault"
- Key: "Role"

Value: "Vault-Server"

Outputs:
VaultInstancelId:

233

158
159
160
161
162
163
164
165
166
167

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Description: "Vault Instance ID"
Value: !Ref VaultInstance
Export:
Name: !Sub "${AWS::StackName}-Vault-Instance-ID"

VaultInstancePrivateIP:
Description: "Vault Instance Private IP"
Value: !GetAtt VaultInstance.Privatelp
Export:
Name: !Sub "${AWS::StackName}-Vault-Private-IP"

234

O 0 N Gk W N

== = =
(S SR -

14

15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36

SECURITY AND COMPLIANCE CONTROLS - REMOTE ATTESTATION

Miscellaneous

PyJWT.py
SEV-SNP JWT Python Script for Custom Claim Injection and Token Generation. Demonstrates
enclave-signed claim generation and token issuance for Vault JWT attestation workflows.

#HHHHHR R AR AR BER GRS R R R R R R R R R R R R R R R R

Project: OmniAware - Next-Gen Defence Platform

Component: SEV-SNP Remote Attestation - JWT Claim Generation

Script Name: PyJWT.py

Description: Generates a signed JSON Web Token (JWT) embedding attestation
metadata for SEV-SNP workloads. The token includes a nonce,

time-bound validity and a base64-encoded attestation report.
This token is submitted to Vault for secure policy evaluation.
Author: Valentin Pfeil

Institution: University of the Bundeswehr Munich (M.Sc. Computer Science)
Supervision: Prof. Dr. Wolfgang Hommel / Dr. Karl Fuerlinger

Date: 2025-06-15

License: Research Use Only / Academic Distribution, Subject to Future

— Publication

Requirements: PyJWT, Python 3.10+, valid SEV-SNP attestation report

— (guest_report.b64)

EEEs s s s st s s s s m s s s s s S s s S s S S S s e

import jwt
from datetime import datetime, timedelta, timezone

Load private key used for RS256 signing (e.g. from Nitro Enclave, HSM or secure
— store)

private_key = open('"private.key", "r").read()

Prepare payload including attestation metadata

payload = {
"sub": "attester-001", # Subject identifier of the enclave
"aud": "vault", # Intended audience, e.g. Vault verifier
"iss": "sev-snp", # Issuer of the attestation (SEV-SNP runtime)
"nonce": "abc123", # Optionally SHA256 (nonce) for replay protection
"iat": datetime.now(timezone.utc), # Issued at timestamp

"exp": datetime.now(timezone.utc) + timedelta(minutes=5), # Expiry time
"report": open("/tmp/guest_report.b64", "rb").read().hex() # SEV-SNP attestation
— report (base64)

Encode the JWT using RS256 and output token
token = jwt.encode(payload, private_key, algorithm="RS256")
print (token)

13

13 This attestation report was generated by a prototype AMD SEV-SNP instance and has been minimally

redacted.

235

O 0 N N G W=

[~ S S
W N = O

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42
43

45
46
47
48
49
50

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

INTERFACES - API GATEWAYS

Secure Ingest Gateway Deployment

20_secure-ingest-api.yaml

CloudFormation template for the Secure Ingest API. Provides a telemetry ingestion interface

and demonstrates Zero Trust design principles within a NATO-aligned architecture.

Project:
Component :
Stack Name:
Description:

Author:
Institution:
Supervision:
Date:
License:
Publication
Format:

Tags:

Notes:

#################£ HOoH O O B OB O H R O H R

Description:

Parameters:

Application:

Stage:

Prefix:

Region:

236

Documentation:

Type: "String"
Default: "OmniAware"

Type: "String"
Default: "dev"

Type: "String"
Default: "omniaware"

#E#BHBHRBERER BRI R R R R R R R R R R R R R R AR RS

OmniAware - Next-Gen Defence Platform

Sensor Ingest API (Secure Gateway Design)
20_ingest-secure-api.yaml

Defines a secure and extensible API structure for ingesting
telemetry and sensor data. Demonstrates interoperability and
extensibility in a NATO-compliant (NAFv4) deployment model.

Valentin Pfeil

University of the Bundeswehr Munich (M.Sc. Computer Science)
Prof. Dr. Wolfgang Hommel / Dr. Karl Fuerlinger

2025-06-15

Research Use Only / Academic Distribution, Subject to Future

OpenAPI 3.0 / YAML

Ingest API, Defence Data Platform, NAFv4, Interoperability,
Sensor Data, NATO Compliance, API Gateway, Zero Trust

- Implements a secure, extensible ingest interface for telemetry and image data.
- Includes support policy-enforced access.
- Intended for deployment in attested environments (e.g. SEV-SNP / Nitro Enclave).

- Refer to Master Thesis Chapter 4.3: Interfaces
- Use Case Context: Platform Health Monitoring (PHM)

Referenced Dependencies:
- Vault Token Injection (for JWT verification layer)
- Security Group (Ingress/Logging Layer for Gateway Lambda)
R R R i

AWSTemplateFormatVersion: "2010-09-09"

"Secure Ingest API Stack for AWS Guild Account - based on GroupIT version,
reduced to essential components for Proof of Concept and experimental Confidential
— Computing setup."

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110

INTERFACES - API GATEWAYS

Type: "String"

Default: "eu-west-1"
VpcId:

Type: "String"

Description: "The ID of the VPC to deploy the API into"
AdminRoleName:

Type: "String"

Default: "GuildAdminRole"
SecurityAccountId:

Type: "String"

Default: "000000000000"
CloudWatchKmsKeyId:

Type: "String"

Default: "dummy-key-id"

Resources:
ApiExecutionRole:
Type: AWS::IAM::Role
Properties:
RoleName: !Sub "${Application}-${Stage}-ApiGatewayRole"
AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
- Effect: Allow
Principal:

Service: apigateway.amazonaws.com
Action: sts:AssumeRole

ApiExecutionPolicy:
Type: AWS::IAM::Policy

Properties:

PolicyName: !Sub "${Application}-${Stage}-ApiGatewayPolicy"
Roles:

- !Ref ApiExecutionRole
PolicyDocument:

Version: "2012-10-17"

Statement:

- Effect: Allow
Action:

- logs:CreateLogGroup

- logs:CreatelogStream

- logs:PutLogEvents
Resource: "x"

ApiGatewayAccount:
DependsOn: ApiExecutionPolicy
Type: AWS::ApiGateway::Account
Properties:
CloudWatchRoleArn: !GetAtt ApiExecutionRole.Arn

ApiLogGroup:
Type: AWS::Logs::LogGroup
Properties:
LogGroupName: !Sub "/${Application}/${Stage}/IngestApi"
RetentionInDays: 30
KmsKeyId: !Sub

— "arn:aws:kms:${Region}:${SecurityAccountId}:key/${CloudWatchKmsKeyId}"

IngestRestApi:
Type: AWS::ApiGateway::RestApi
Properties:

237

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

111 Name: !Sub "${Application}-${Stage}-IngestApi"
112 Description: "Private API for telemetry data ingestion (PoC)"
113 FailOnWarnings: true

114 BinaryMediaTypes:

115 - "application/json"

116 EndpointConfiguration:

117 Types:

118 - "REGIONAL"

119

120 RootResource:

121 Type: AWS::ApiGateway::Resource

122 Properties:

123 RestApild: !'Ref IngestRestApi

124 ParentId: !GetAtt IngestRestApi.RootResourceld
125 PathPart: vi

126

127 TelemetryResource:

128 Type: AWS::ApiGateway::Resource

129 Properties:

130 RestApild: !Ref IngestRestApi

131 ParentId: !Ref RootResource

132 PathPart: telemetry

133

134 TelemetryModel:

135 Type: AWS::ApiGateway::Model

136 Properties:

137 RestApild: !'Ref IngestRestApi

138 ContentType: "application/json"

139 Name: "TelemetryDataModel"

140 Description: "Schema model for ingest data"
141 Schema:

142 "$schema": "http://json-schema.org/draft-04/schema#"
143 type: "object"

144 properties:

145 timestamp:

146 type: string

147 payload:

148 type: object

149

150 TelemetryValidator:

151 Type: AWS::ApiGateway::RequestValidator

152 Properties:

153 RestApild: !Ref IngestRestApi

154 Name: "TelemetryValidator"

155 ValidateRequestBody: true

156 ValidateRequestParameters: false

157

158 TelemetryMethod:

159 Type: AWS::ApiGateway::Method

160 Properties:

161 RestApild: !'Ref IngestRestApi

162 Resourceld: !Ref TelemetryResource

163 HttpMethod: POST

164 AuthorizationType: "AWS_IAM"

165 RequestModels:

166 "application/json": !Ref TelemetryModel
167 RequestValidatorId: !Ref TelemetryValidator
168 Integration:

169 Type: MOCK

170 IntegrationResponses:

171 - StatusCode: 200

238

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211

RequestTemplates:
"application/json": "{\"statusCode\": 200}"
MethodResponses:
- StatusCode: 200

IngestDeployment:
DependsOn: TelemetryMethod
Type: AWS::ApiGateway::Deployment
Properties:
RestApild: !Ref IngestRestApi
Description: "Initial deployment"

IngestStage:
DependsOn: ApiGatewayAccount
Type: AWS::ApiGateway::Stage

Properties:
StageName: !Ref Stage
RestApilId: !Ref IngestRestApi
DeploymentId: !Ref IngestDeployment
Description: "PoC stage"
AccessLogSetting:

DestinationArn: !GetAtt ApiLogGroup.Arn

MethodSettings:

- HttpMethod: POST
ResourcePath: /vl/telemetry
LogginglLevel: INFO
MetricsEnabled: true

Tags:
- Key: "Name"

- Key: "Role"
Value: "Secure-Ingest-API"

Outputs:
IngestApiInvokeUrl:
Description: "Invoke URL for the ingest API"

— tagel}/vl/telemetry"
Export:

Value: !Sub "${ProjectName}-${Environment}-secure-ingest-api"

Value: !Sub "https://${IngestRestApi}.execute—api.${AWS::Region}.amazonaws.com/${SJ

Name: !Sub "${Application}-${Stage}-IngestApiInvokeUrl"

INTERFACES - API GATEWAYS

14

14 The implementation of this module was based on code contributions by colleagues in the OmniAware

project and has been integrated with their explicit permission.

239

NN O G s W=

O 0 N G W N

W W W W W W W W N NNNNNERNRNDNDD-RSRSR = = =2 = B = 2
N O G bk W NP, O W0V 0N O G kB WN R O WO 0N O UG & W -~ o

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

Secure Ingest Gateway Validation

Telemetry Ingest API

NGVA - Sample JSON Data Model, simplified
The following JSON structure represents a minimal, schema-aligned telemetry payload adher-
ing to the NGVA data model for secure ingestion into the pipeline.

{
"DateTime": {},
"Vehicle_Configuration": {
"Actual_Configured_Vehicle": {
"vehicleId": {}
}
}
}

NGVA - Sample JSON Data Model

This extended and partially simplified JSON schema implements a representative data payload
for secure telemetry ingestion based on the NGVA specification. It was developed to emulate
realistic conditions and includes structural fields for vehicle configuration, usage and condition
monitoring, threshold definitions and publication metadata.

{
"DateTime": {},
"Vehicle_Configuration": {
"Actual_Configured_Vehicle": {
"vehicleId": {},
"battleOverride": {3},
"equipmentPowerLevel": {},
"operatingMode": {}
}
1},
"Usage_And_Condition_Monitoring": {
"Monitored_Characteristic": {
"engine_temperature": {
"value": {}
}
},
"Monitored_Characteristic_Specification": {
"engine_temperature_specification": {
"unit": {},
"descriptor": {},
"publishingIntervalInSeconds": {},
"characteristicKind": {}
}
},
"Threshold": {
"engine_temperature_threshold_min": {
"name": {} s
"value": {},
"type" . {} R
"maxDuration": {},
"maxNumberOfRepetitions": {}
},
"engine_temperature_threshold_max": {
"name": {3},
"value": {},
lltypeII: {}’
"maxDuration": {},

240

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

INTERFACES - API GATEWAYS

"maxNumberOfRepetitions": {}
}
Ig
"Threshold_Specification": {
"engine_temperature_min_threshold_specification": {
"valueThresholdSupported": {},
"durationThresholdSupported": {},
"repetitionsThresholdSupported": {}
1},
"engine_temperature_max_threshold_specification": {
"valueThresholdSupported": {},
"durationThresholdSupported": {},
"repetitionsThresholdSupported": {}
}
}
g
"Navigation_Reference": {
"Position": {
"currentPosition": {}

g
"Position_Uncertainty": {
"value": {},
"type": {}
g

"Speedometer": {
"measuredSpeed": {}
}
}

JSON Schema Draft-04 - Sample Telemetry Schema for Test Purposes

This JSON schema was developed for testing purposes to emulate structured telemetry pay-
loads with JSON-style message formats. It serves as a prototype to validate basic schema
conformance, field structure and processing logic within the ingestion pipeline under con-

O 0 N O U W N =

e e e e <
O 0 N N Uk W N RO

20
21
22
23
24

trolled test conditions [3].

{
"id": "http://json-schema.org/draft-04/schema#",
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Core schema meta-schema",
"definitions": {
"schemaArray": {
"type": "array",
"minItems": 1,
"items": { "$ref": ngn }
},
"positiveInteger": {
"type": "integer",
"minimum": O
},
"positiveIntegerDefault0": {

},
"simpleTypes": {

— "string"]

}’

"stringArray": {
lltypell B |Iarray|l,
"items": { "type":
"minItems": 1,

"string" },

"all0f": [{ "$ref": "#/definitions/positiveInteger" }, { "default":

"enum": ["array", "boolean", "integer", "null", "number", "object",

0131

241

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

242

}’

"uniquelItems": true

"type": "object",
"properties": {

Ilidll B {
"type": "string"
Dg
"$schema": {
"type": "string"
Dg
"title": {
lltypell : llstringll
Dg
"description": {
lltypell : llstringll
Dg
"default": {},
"multipleOf": {
"type": "number",
"minimum": O,
"exclusiveMinimum": true
g
"maximum": {
lltypell : lln-umberll
g
"exclusiveMaximum": {
"type": "boolean",
"default": false
g
"minimum": {
"type": "number"
g
"exclusiveMinimum": {
"type": "boolean",
"default": false
},

"maxLength": { "$ref": "#/definitions/positivelnteger" },
"minLength": { "$ref": "#/definitions/positiveIntegerDefaultO" },

"pattern": {

{ "$ref": "#/definitions/schemaArray" }

"type": "string",
"format": "regex"
I
"additionalIltems": {
nanyofn . [
{ "type": "boolean" 1},
{ "$ref": "#" }
1y
"default": {}
I
"items": {
"any0f": [
{ "$ref": "#" },
1y
"default": {}
g

"maxItems": { "$ref": "#/definitions/positiveIlnteger" },
"minItems": { "$ref": "#/definitions/positiveIntegerDefaultO" 1},

"uniqueIltems": {
"type": "boolean",

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

}’

INTERFACES - API GATEWAYS

"default": false

},
"maxProperties": { "$ref": "#/definitions/positiveInteger" 7},
"minProperties": { "$ref": "#/definitions/positivelntegerDefaultO" },
"required": { "$ref": "#/definitions/stringArray" },
"additionalProperties": {
"any0f": [
{ "type": "boolean" },
{ "$ref": ngn }
Al
"default": {}
},

"definitions": {
"type": "object",
"additionalProperties": { "$ref": "#" },
"default": {}

},

"properties": {
"type": "object",
"additionalProperties": { "$ref": "#" },
"default": {}

},

"patternProperties": {
"type": "object",
"additionalProperties": { "$ref": "#" },
"default": {}

},

"dependencies": {
"type": "object",
"additionalProperties": {

"any0f": [
{ "$ref": "#" },
{ "$ref": "#/definitions/stringArray" }

]
}
},
"enum" : {
"type": "array",
"minItems": 1,
"uniqueltems": true
},
lltypell : {
"any0f": [
{ "$ref": "#/definitions/simpleTypes" },
{
"type": "array",
"items": { "$ref": "#/definitions/simpleTypes" },
"minItems": 1,
"uniqueltems": true
}
]
},

"format": { "type": "string" },

"all0f": { "$ref": "#/definitions/schemaArray" },
"any0f": { "$ref": "#/definitions/schemaArray" },
"oneOf": { "$ref": "#/definitions/schemaArray" },
llnotll : { ll$refll : ll#ll }

"dependencies": {

"exclusiveMaximum": ["maximum"

"exclusiveMinimum": ["minimum"

243

APPENDIX - IMPLEMENTATION: SOURCE CODE AND DEPLOYMENT ARTEFACTS

147 },
148 "default": {}
149 |}

Image Ingest API

Image to Base64 - Encoding
Illustrates the Base64 encoding of binary image data for transmission via the Secure Ingest

APL

1 cat <Insert Image Path> | base64 > <Insert Base64 File Path>.txt

244

Hereby, I assure that the attached work has been created autonomously and without any
support. The quotations have been done properly and I do not have used any sources beyond

the scope of my bibliography.

Furthermore, I have taken the instructions for the academic and final thesis into account and
granted my University of the Bundeswehr Munich the right of use.

. Digitally signed
. Pfelll by Pfeil, Valentin
. Date: 2025.06.25

Valentin ;51¢s50200

Signature

	Contents
	Introduction
	Background
	OmniAware
	NATO Architecture Framework Version 4
	Confidential Computing and Data Sovereignty
	Cloud, Fog and Edge Computing in Defence
	High-Performance Computing for Defence Applications
	Sensor Fusion and Situational Awareness
	C4ISR: Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance
	Related Work
	Methodological Approach and Structural Overview

	Architecture and Design
	Overview and Viewpoints
	Cloud, Edge and High-Performance Computing
	Confidential Computing
	Interfaces

	Implementation
	Deployment
	Security and Compliance Controls
	Interfaces
	Validation

	Insights
	Cloud and Edge Computing
	Confidential Computing
	Interoperability

	Conclusion
	Evaluation
	Outlook

	References
	Appendix - Architecture and Design: NAFv4
	Model Descriptions

	Appendix - Implementation: Source Code and Deployment Artefacts
	Deployment - CI/CD-Pipeline
	Core Infrastructure
	Security and Compliance Controls - Remote Attestation
	Interfaces - API Gateways

		2025-06-25T20:16:52+0200
	Pfeil, Valentin

