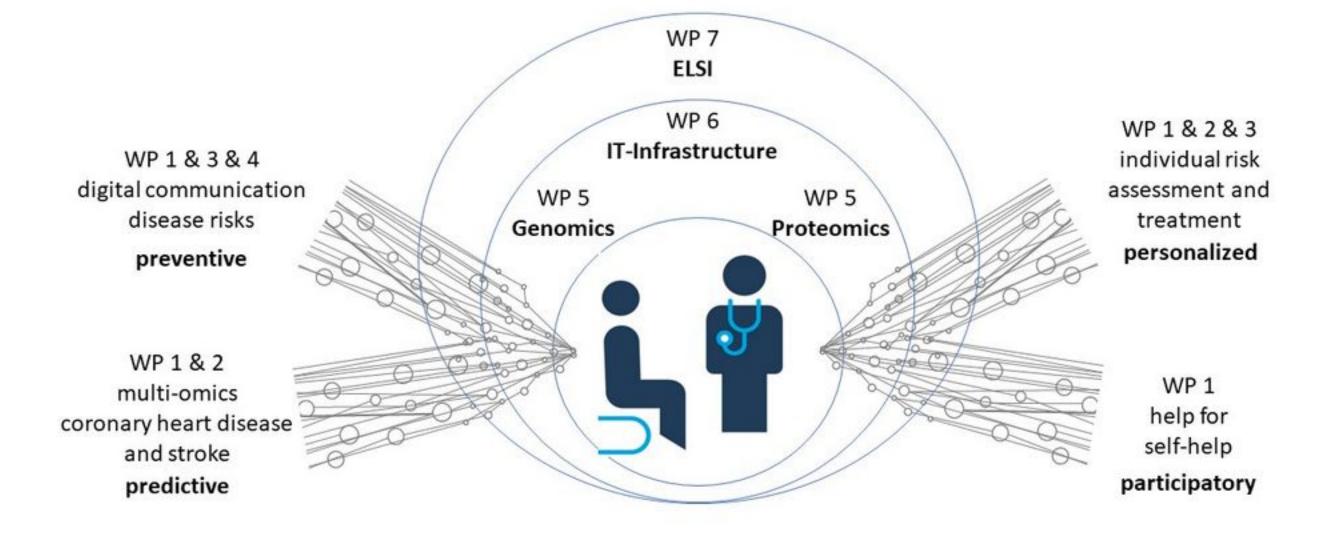
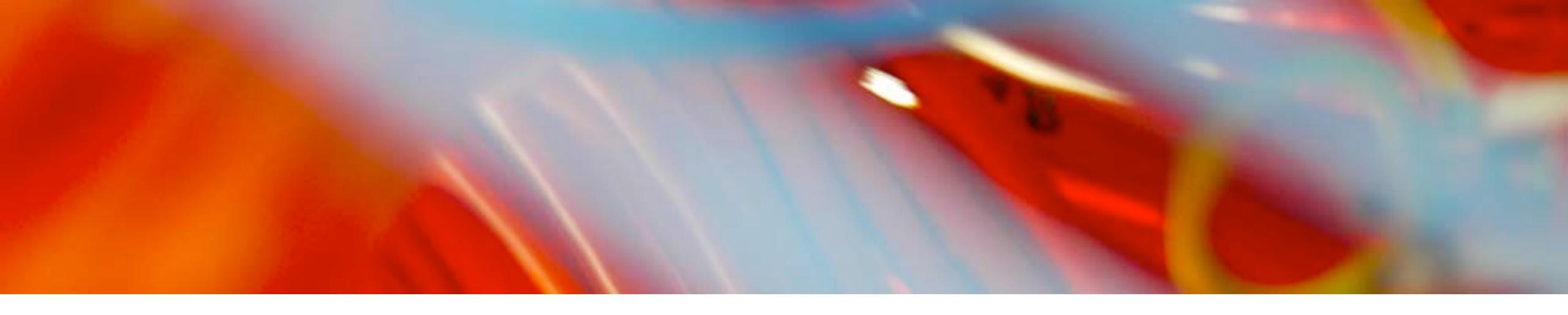


Confidential Computing via Hardware Trusted Execution Environments by an OpenStack HPC capable cloud Second lieutenant, Representative, Valentin Pfeil

Stakeholder

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften


Introduction Thesis Methodology Conclusion Results


Dislocation

Requirements:

- ▶ Confidentiality (GPDR compliance)
- ▶ High Performance (Big Data and Artificial Intelligence)
- ▶ Flexibility (Private Cloud)
- **▶**Approach:
 - **▶ AMD Infinity Guard (incl. AMD SEV)**
 - ▶ HPC hardware (CPU: AMD EPYC 75F3, ...) and software components (OpenMPI/SLURM, ...)
 - **▶ Virtualization and cloud-services** (OpenStack/QEMU-KVM)

		Management servers			
Count	Description	CPU	RAM	Storage	Network
m-001	Lenovo ThinkSystem SR665	1x AMD EPYC 75F3 32 cores @2.95GHz up to 4.0GHz, 8 Memory Channels	4x 64 GB DDR 4	2x 3.84TB SATA SSD RAID 1	1x 100GbE 1x 40GbE 1x 1GbE
m-002	Lenovo ThinkSystem SR665	1x AMD EPYC 75F3 32 cores @2.95GHz up to 4.0GHz, 8 Memory Channels	4x 64 GB DDR 4	2x 3.84TB SATA SSD RAID 1	1x 100GbE 1x 40GbE 1x 1GbE
m-003	Lenovo ThinkSystem SR665	1x AMD EPYC 75F3 32 cores @2.95GHz up to 4.0GHz, 8 Memory Channels	4x 64 GB DDR 4	2x 3.84TB SATA SSD RAID 1	1x 100GbI 1x 40GbE 1x 1GbE
		Compute servers			
Count	Description	CPU	RAM	Storage	Network
c-001	Lenovo ThinkSystem SR665	2x AMD EPYC 75F3 32 cores @2.95GHz up to 4.0GHz, 8 Memory Channels	16x 64 GB DDR 4	1x 800GB NVMe SSD	1x 100Gb 1x 40GbE 1x 1GbE
c-002	Lenovo ThinkSystem SR665	2x AMD EPYC 75F3 32 cores @2.95GHz up to 4.0GHz, 8 Memory Channels	16x 64 GB DDR 4	1x 800GB NVMe SSD	1x 100Gb 1x 40GbE 1x 1GbE
		A AND EDVO BEEG			1x 100Gb


2x AMD EPYC 75F3 32 cores @2.95GHz up to 4.0GHz, 8 Memory Channels

	NSR0 6F	
42		TOR nexus 9300 36p 100G
41		
40		
39		t-000
38		
37		
36		
35		
34		
33		
32		
31		
29		
28		
27		
26		
25		
24		
23		
22		m-003
21		
20		m-002
19		
18		m-001
17		c-003
16 15		0-003
14		c-002
13		0 002
12		c-001
11		
10		
9		
8		t-003
7		
6		t-002
- 5		
4		t-001
3		
1		
1		
	0 0	

- ▶ RQ1: How does the security attestation of TEEs work?
- ▶ RQ2: How is Usability affected when TEEs are implemented in a confidential HPCaaS?
- ▶ RQ3: How is Performance affected when TEEs are implemented in a confidential HPCaaS?

Deployment

- OpenStackClient
- ▶ Terraform
- Ansible
- OpenMPI
- ▶ SLURM
- ▶ GROMACS

11010

Approach

- ▶ RQ1: One node, AMD SEV enabled, Certificate inspection
- ▶ RQ2: General deployment, configuration and operation of HPC cluster, determination and evaluation of usability
- ▶ RQ3: GROMACS benchmarks over SLURM/ OpenMPI
- ▶ 1/3/10 nodes

Thesis

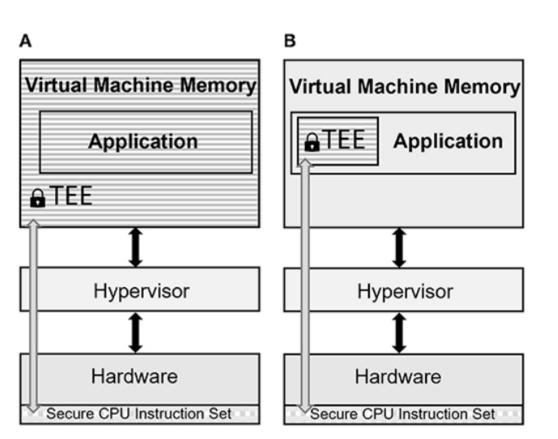
Introduction

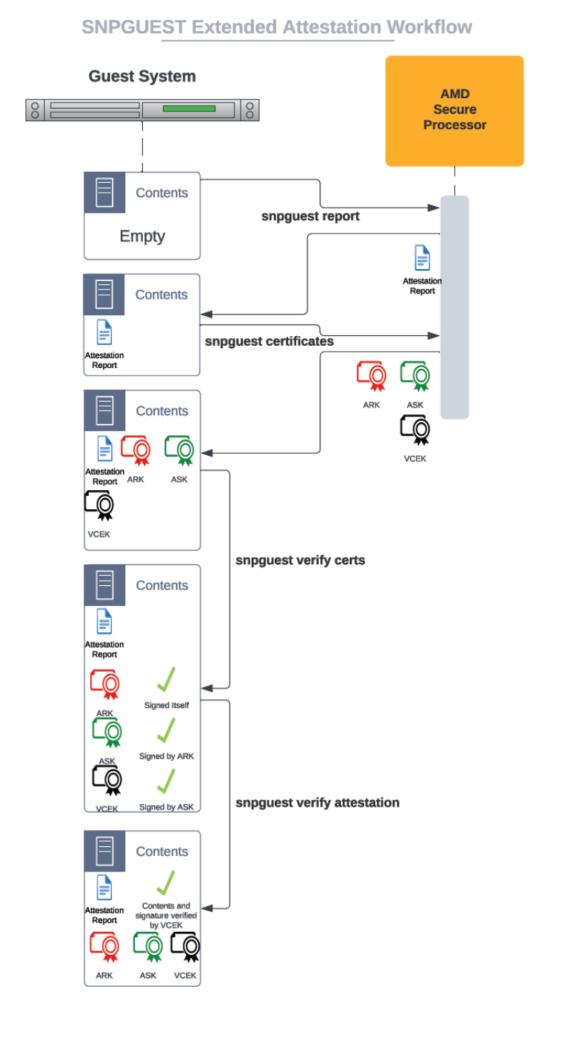
Methodology

Results

Conclusion

▶ RQ1: How does the security attestation of TEEs work?




Figure 2.4: **TEE cloud computing [15]**

- A: **Virtual machine-based model**, the whole memory of the virtual machine is encrypted.
- B: **Process-based model**, only the memory of the enclave is encrypted.

▶ RQ1: How does the security attestation of TEEs work?

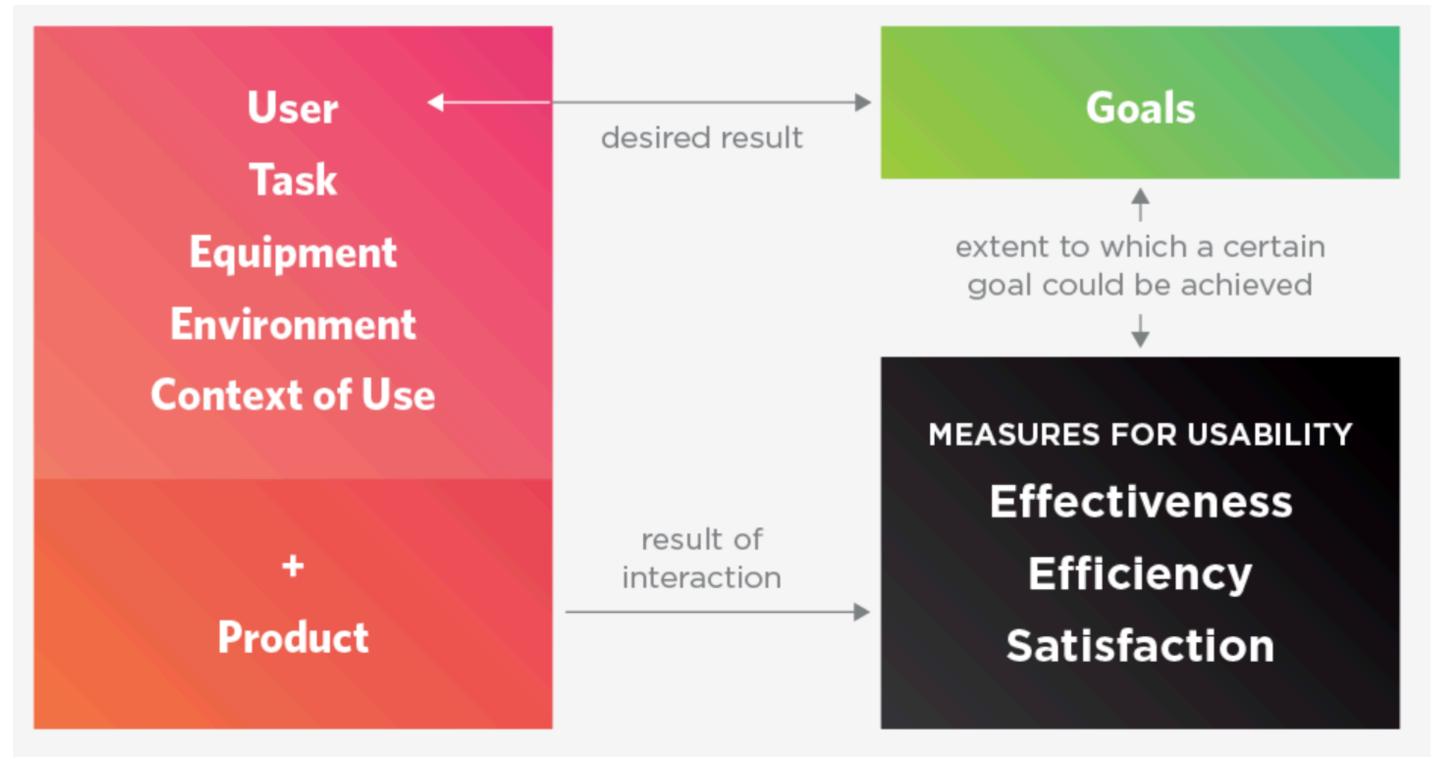

```
    □ ubuntu@control.cloud.digimed.lrz.de (2)

                                                                        .€ ×
ubuntu@cpu-sev-1:~$ ./sevctl/target/release/sevctl ok
[ PASS ] - AMD CPU
          - Microcode support

    Secure Memory Encryption (SME)

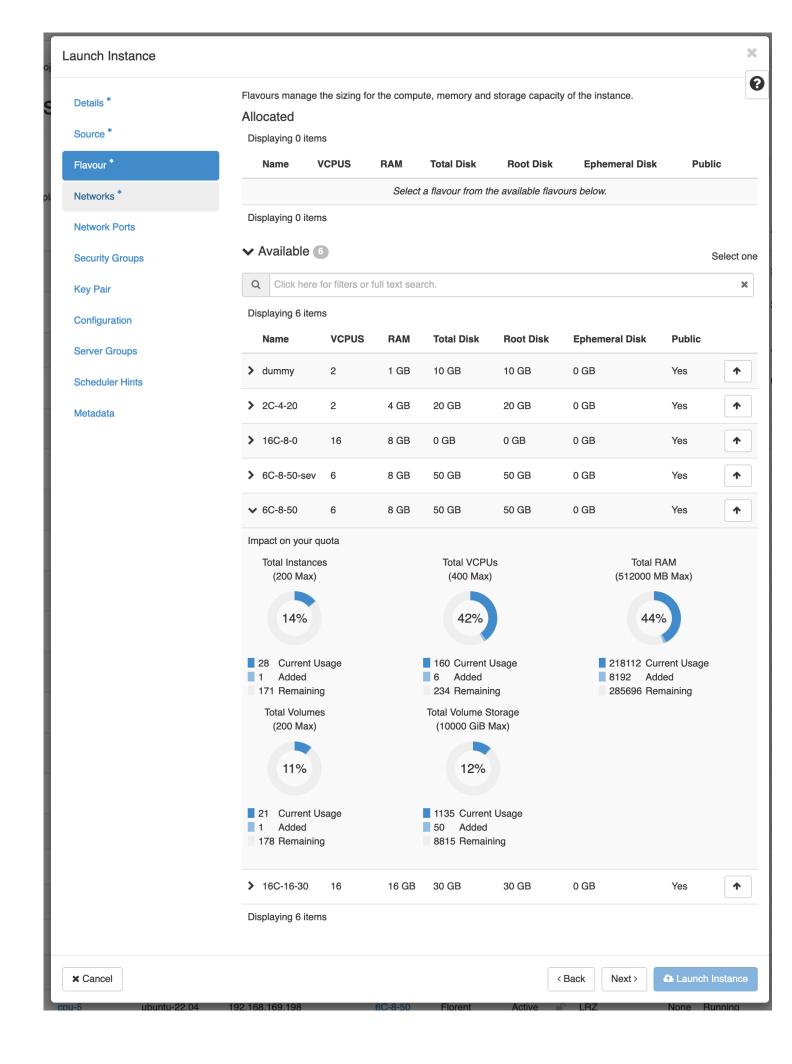
    Secure Encrypted Virtualization (SEV)

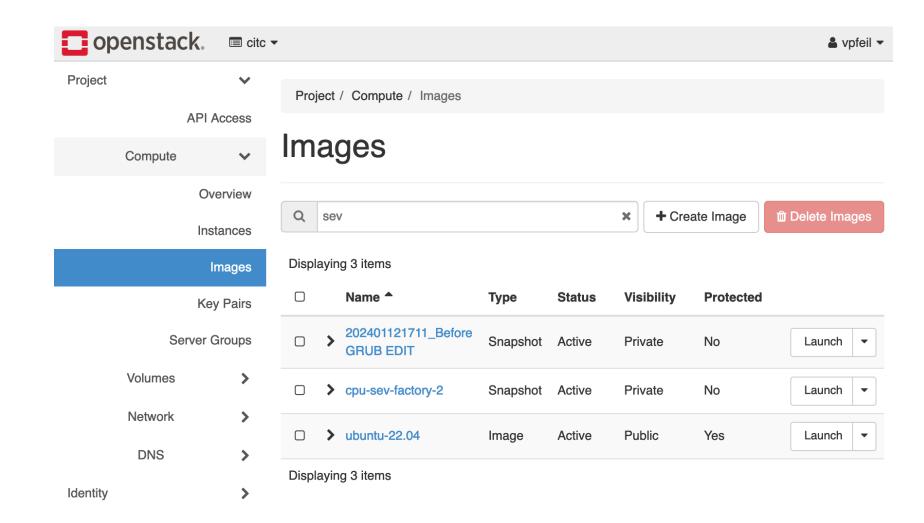
[ PASS ]
             Encrypted State (SEV-ES)
[ FAIL ]
[ FAIL ]
            Secure Nested Paging (SEV-SNP)
              - VM Permission Levels
[ SKIP ]
[ SKIP ]
                 - Number of VMPLs
            - Physical address bit reduction: 1
[ PASS ]
            - C-bit location: 51
[ PASS ]
            - Number of encrypted guests supported simultaneously: 0
[ PASS ]
[ PASS ]
            - Minimum ASID value for SEV-enabled, SEV-ES disabled guest: 0
            - SEV enabled in KVM: Error - /sys/module/kvm_amd/parameters/se
[ FAIL ]
v does not exist
[ FAIL ]
            - SEV-ES enabled in KVM: Error - /sys/module/kvm_amd/parameters
/sev_es does not exist
            - Reading /dev/sev: /dev/sev not readable: No such file or dire
[ FAIL ]
ctory (os error 2)
            - Writing /dev/sev: /dev/sev not writable: No such file or dire
ctory (os error 2)
[ PASS ] - Page flush MSR: DISABLED
[ FAIL ] - KVM supported: Error reading /dev/kvm: (No such file or directory
[ PASS ] - Memlock resource limit: Soft: 982831104 | Hard: 982831104
Error: One or more tests in sevctl-ok reported a failure
```



▶ RQ2: How is Usability affected when TEEs are implemented in a confidential HPCaaS?

▶ RQ2: How is Usability affected when TEEs are implemented in a confidential HPCaaS?

EN ISO 9241-11:2018


Introduction	Thesis	Methodology	Results	Conclusion



RQ2: How is Usability affected when TEEs are implemented in a confidential

HPCaaS?

Frontend

▶ RQ2: How is Usability affected when TEEs are implemented in a confidential HPCaaS?

Backend

▶ RQ2: How is Usability affected when TEEs are implemented in a confidential HPCaaS?

Backend

Prerequisites:

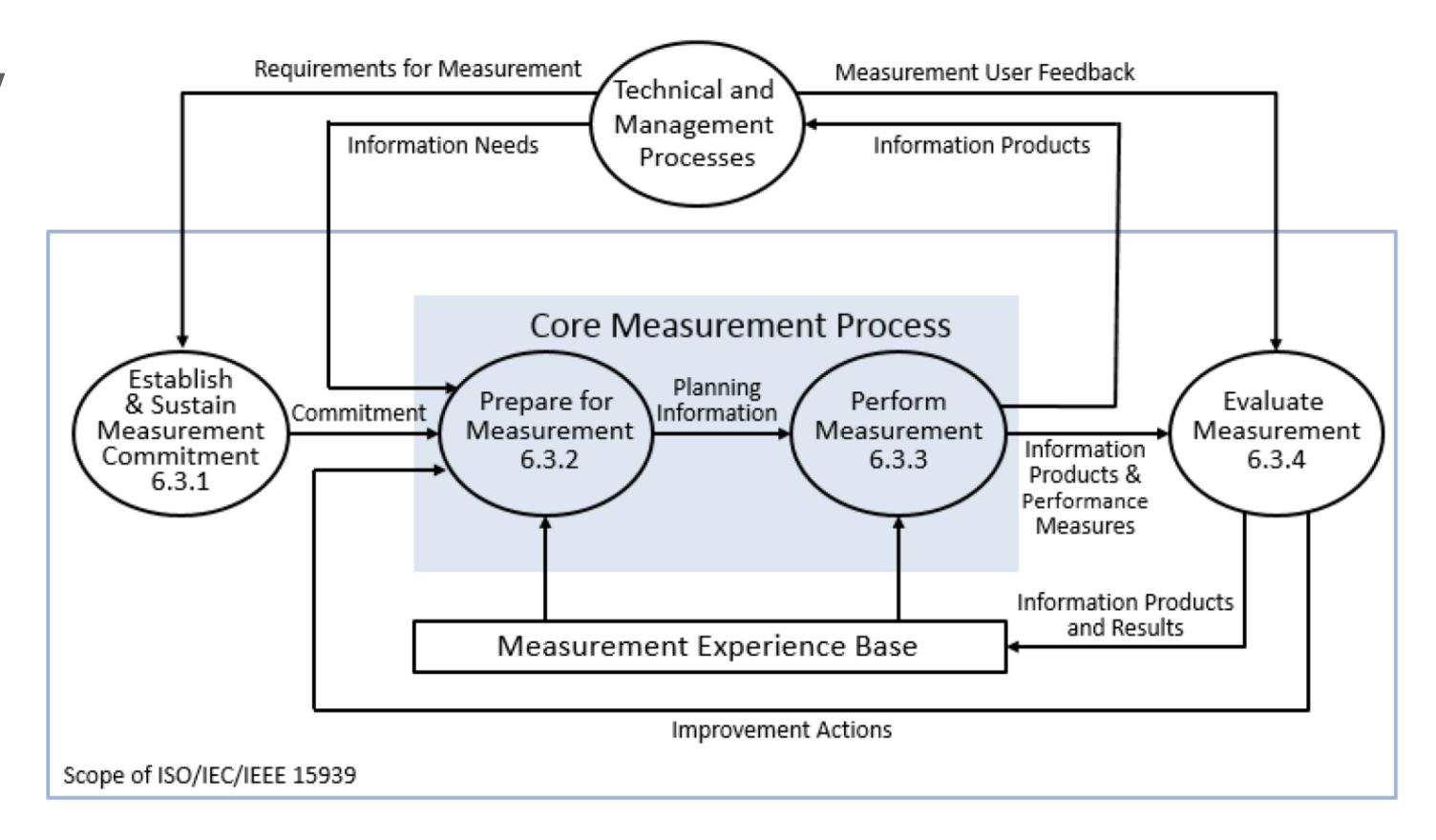
- QEMU-KVM with libvirt.virt_type (driver)
- At least one of the **Nova compute nodes** must be capable of **supporting SEV**
- **▶ Flavor/image requirements:**
 - ▶ Flavor property hw:mem_encryption=true
 - ▶In any case, SEV instances have to have their boot images with hw_firmware_type property set to uefi
 - ▶Images property have to have hw_machine_type=q35 or per compute node via libvirt.hw_machine_type set to x86_64=q35

Limits:

Permanent:

- ▶On the first generation of EPYC machines, the number of guests is limited to 15
- **▶OS** needs to **support SEV**
- **▶** Impermanent:
 - **▶ Live migration** and **suspension** of VMs
 - **▶PCI passthrough** to VMs
 - ▶ Boot disk limited to virtio

Introduction	Thesis	Methodology	Results	Conclusion
--------------	--------	-------------	---------	------------



ISO/IEC/IEEE 15939:2017

Benchmarks - MFLOPS Accounting

	cpu			
	benchRIB	cmet_eq	benchBFC	
M-Flops	925205908.230	14527316278.663	34223340.327	

Table 5.1: Partition cpu - Single Node - Mega-Flops Accounting

	cpu-sev				
	benchRIB	cmet_eq	benchBFC		
M-Flops	925063918.719	14542858037.511	34287275.083		

Table 5.2: Partition cpu-sev - Single Node - Mega-Flops Accounting

cpu				
	benchRIB	cmet_eq	benchBFC	
M-Flops	938244867.570	15230958917.053	35912739.227	

Table 5.5: Partition cpu - Three-Node Cluster - Mega-Flops Accounting

	cpu-sev			
	benchRIB	cmet_eq	benchBFC	
M-Flops	938197070.312	15228015556.021	35903490.594	

Table 5.6: Partition cpu-sev - Three-Node Cluster - Mega-Flops Accounting

cpu				
	benchRIB	cmet_eq	benchBFC	
M-Flops	1071630614.665	15299855815.791	58838419.978	

Table 5.9: Partition cpu - Small Cluster - Mega-Flops Accounting

	cpu-sev			
	benchRIB	cmet_eq	benchBFC	
M-Flops	1104463557.104	19590361804.160	47120266.026	

Table 5.10: Partition cpu-sev - Small Cluster - Mega-Flops Accounting

Introduction	Thesis	Methodology	Results	Conclusion

Benchmarks - Time Accounting

	cpu		
	benchRIB	cmet_eq	benchBFC
Wall t (s)	3208.421	53174.533	214.008
Core t (s)	19250.521	319047.194	1284.048
Effective t (mm:ss)	53:28	14h46:14	3:40

Table 5.3: Partition cpu - Single Node - Time Accounting

cpu-sev					
benchRIB cmet_eq benchBFC					
Wall t (s)	2697.893	60848.689	151.757		
Core t (s)	16187.353	365092.133	910.543		
Effective t (mm:ss)	44:57	16h54:08	2:31		

Table 5.4: Partition cpu-sev - Single Node - Time Accounting

	cpu		
	benchRIB	cmet_eq	benchBFC
Wall t (s)	2278.896	37748.322	106.490
Core t (s)	41020.113	679469.783	1916.798
Effective t (mm:ss)	37:58	10h29:08	1:46

Table 5.7: Partition cpu - Three-Node Cluster - Time Accounting

cpu-sev				
	benchRIB	cmet_eq	benchBFC	
Wall t (s)	2300.233	37748.322	107.563	
Core t (s)	41403.986	679469.783	1936.119	
Effective t (mm:ss)	38:20	11h19:57	1:48	

Table 5.8: Partition cpu-sev - Three-Node Cluster - Time Accounting

cpu				
	benchRIB	cmet_eq	benchBFC	
Wall t (s)	1153.569	21768.311	86.232	
Core t (s)	69212.669	1306098.487	5173.522	
Effective t (mm:ss)	19:16	6h02:48	1:26	

Table 5.11: Partition cpu - Small Cluster - Time Accounting

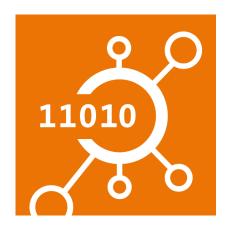
cpu-sev					
benchRIB cmet_eq benchBF					
Wall t (s)	665.509	22587.554	87.012		
Core t (s)	39919.275	1355252.592	5219.928		
Effective t (mm:ss)	11:05	6h16:27	1:27		

Table 5.12: Partition cpu-sev - Small Cluster - Time Accounting

Introduction Thesi	Methodology	Results	Conclusion
--------------------	-------------	---------	------------

Course of project

- **01.09.2023 15.01.2024**
- ▶ Phase I: Information gathering, familiarisation with the LRZ Compute Cloud (CC)


01.09.2023 - 01.10.2023

Phase II: Writing the thesis

02.10.2023 - 08.12.2023

Phase III: Writing the thesis, Working on DigiMed prototype system

09.12.2023 - 15.01.2024

Introduction	Thesis	Methodology	Results	Conclusion

Challenges

- ▶ Phase I: Information gathering, familiarisation with the LRZ Compute Cloud (CC)
 - ▶ Complexity and limits
 - ▶ ISO norm sources
 - Structure
- ▶ **Phase II**: Writing the thesis
 - ▶ Set up the access to the prototype
 - ▶ Portability of seminar work
 - ▶ Set up failover strategies in case of failure in different layers
 - Programmierprojekt
- ▶ Phase III: Writing the thesis, Working on DigiMed prototype system
 - ▶ Balance between external work and writing
 - ▶ Scheduling possibilities of correction
 - ▶ Adjustments regarding complexity and limits
 - ▶ Programmierprojekt

Introduction	Thesis	Methodology	Results	Conclusion

- ▶ **RQ1:** How does the security attestation of TEEs work?
 - Guest requests an attestation report and finally verifies it
 - ▶ Interactions are done via VirTEE tools
 - ▶ Security attestation was not available as AMD SEV was not available to its full extent, SNP features were necessary
- ▶ RQ2: How is Usability affected when TEEs are implemented in a confidential HPCaaS?
 - Frontend: Users need to choose the right image to deploy a VM with SEV enabled
 - ▶ Backend: SEV partition is limited to 15 guests per host, SEV prerequisites need to be fulfilled on the OpenStack flavour or image
- ▶ RQ3: How is Performance affected when TEEs are implemented in a confidential HPCaaS?
 - ▶ Performance of SEV partition is slightly lower than the one of the non-SEV partition
 - Occasionally even better
 - Figures seem satisfying, the number of nodes is limited to ten

Introduction	Thesis	Methodology	Results	Conclusion

Next steps:

- ▶ Full implementation of AMD SEV-SNP
- Migration of real use cases
- Capacities of up-scale HPC cluster

References

- [1] ISO/IEC/IEEE 15939:2017 Systems and software engineering Measurement process. IEEE, 2017, ISBN: 9781504448512.
- [2] B. S. Institution, EN ISO 9241-11:2018 Ergonomics of human-system interaction (BS EN ISO). London: British Standards Institution, 2018, vol. 9241-11:2018, ISBN: 9780580893285.
- [3] B. S. Institution, ISO/IEC 22123-1:2023 Information technology Cloud computing Part 1: Vocabulary. London: British Standards Institution, 2023.
- [4] B. S. Institution, ISO/IEC 22123-2:2023 Information technology Cloud computing Part 2: Concepts. London: British Standards Institution, 2023.
- [5] B. S. Institution, ISO/IEC 22123-3:2023 Information technology Cloud computing Part 3: Reference architecture. London: British Standards Institution, 2023.
- [6] T. Geppert, S. Deml, D. Sturzenegger, and N. Ebert, "Trusted Execution Environments: Applications and Organizational Challenges," English, Frontiers in Computer Science, vol. 4, p. 78, 2022. doi: 10.3389/fcomp.2022.930741. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741/full.

References

[7] GitHub. "VirTEE." (2024), [Online]. Available: https://github.com/virtee/.

[8] OpenStack. "Open Source Cloud Computing Infrastructure - OpenStack." (2023), [Online]. Available: https://www.openstack.org/.

Q&A

Valentin Pfeil
Institute for Software Technology
Research Institute CODE
University of the Bundeswehr Munich
valentin.pfeil@unibw.de
https://www.unibw.de/code

